## CITY of HOLLYWOOD, FLORIDA

Department of Development Services<br>2600 Hollywood Blvd. • Room 315 • P.O. Box 229045 • Hollywood, Florida 33022-9045<br>Phone (954) 921-3471 • Fax (954) 921-3347•www.hollywoodR.org

Thomas Barnett Director

## TECHNICAL ADVISORY COMMITTEE REPORT

January 17, 2017
Bryan Grosman, Esq.
1051 Northwest 3rd Street
Hallandale, FL 33181
FILE NUMBER: 03-P-142c

SUBJECT: Site Plan Review for additional parking area for a previously approved Site Plan

## SITE DATA

| owner/Applicant: | Islander Apartments, LLC |
| :--- | :--- |
| Address/Locati on: | 5515 Plunkett Street |
| Net Area of Property: | 152,756 sq. $\mathrm{ft} .( \pm 3.50$ acres) |
| Land Use: | Medium Residential \{MRES) |
| Zoning: | Medium-High Multiple Family District \{RM-18) |
| Existing Use of Land: | Residential |

## ADJACENT LAND USE

North: Medium Residential (MRES)
South: Low Residential (LRES)
East: Medium Residential (MRES)
West: General Business (GBUS)

## ADJACENTZONNG

North: Medium-High Multiple Family District (RM-18)
South: Single Family District (RS-6)
East: $\quad$ Medium-High Multiple Family District (RM-18)
West: Medium Intensity Commercial District \{C-3)/Medium/High Intensity Commercial District (C-4)

APPLCANTS MUST ADDRESS ALL COMMENTS AND RNDNGS AS DENTIFIED BY MEMBERS OF THE TECHNCAL ADVISORY COMMTEE BOTH N WRITING (IDENTIFY PAGE NUMBER OF THE CORRECTION) AND ON THE STE PLAN (ALL CHANGES MUST BE IDENTIFIED, I.E. BUBBLED).

## A. APPLICATION SUBMITTALS

Jean-Paul W. Perez, Planning Administrator 954-921-3471

1. Provide a narrative justifying the need for the excessive number of parking stalls.

The proposed parking modifications will serve the current property and will improve the current conditions of the partially developed lot
2. The Ownership and Encumbrance (O\&E) Report shall:
a. Indicate that it was researched from time of platting or 1953 (earliest of the two).
b. Provide date of document, which shall be dated within 30 days of submittal.

Current document is dated 3-26-17
c. Provide hard copies of any type of encumbrance abutting the property boundary necessary for legal access to the property (if none, state so).
Refer to the owner's title of insurance schedule B-II
d. Provide hard copies of all recorded and unrecorded encumbrances (with O.R. or plat book(s) and page number(s) provided) lying within/on the property boundaries (i.e. easements, rights-of-way, non-vehicular access lines, etc.).
Refer to the owner's title of insurance schedule B-II
e. Work with the Engineering Division to ensure the Survey is accurate and all easements and dedications are indicated.
So noted
3. Cover Sheet:
a. Provide a Cover Sheet.

Done, refer to sheet S-1.0
b. Provide the name of the development and phase (if applicable).

Done, refer to sheet S-1.0
c. Provide a Title Block which includes the development name and address, architect's name, address, telephone and/or email address, plan set date and subsequent revision dates.
Done, refer to sheet S-1.0
d. Provide a Sheet Index table.

Done, refer to sheet S-1.0
e. Provide a location map.

Done, refer to sheet S-1.0
f. Provide a "Meeting Dates" table providing for "Preliminary TAC: $1 / 11 / 2017$ " and "Final TAC: TBD" and "PDB: TBD."
Done, refer to sheet S-1.0 Final tack
4. ALTA Survey:
a. Shall provide a note which states the ALTA Survey is based on and dated after the O\&E Report.
Done, refer to the attached "alta survey"
b. Annotate the centerline of the abutting right-of-way.'

Done, refer to the attached alta survey
c. Illustrate natural features such as the topography of existing and proposed contours and/or spot grades.
Done ,Refer to grading plan
d. Illustrate existing curb-cuts and driveways to surrounding properties within 100 feet. No curcuts along plunked sreet of $56^{\text {th }}$ avee with in $100^{\prime}$ of the property
5. Site Plan:
a. Provide a legend for any icons used to represent objects located on the site (e.g., light poles, fire hydrants, drains, etc.). Done, refer to sheet S-1.0
b. Illustrate the centerline of the abutting right-Of-ways and label as such.

Done, refer to sheet S-1.0
c. Illustrate required sight triangles.

Done, refer to sheet S-1.0
d. Provide a fully dimensioned Site Plan.

Done, refer to sheet S-1.0
e. Illustrate the adjacent properties located to the west and south of the subject property and their access points. Utilize a lighter line weight or lighter shade for said properties.
Not done
f. Illustrate the required turning radii as provided by Engineering and Fire herein below. Done, refer to sheet S-1.0
6. Tabular Information:
a. Provide the Legal Description including subdivision name, plat book and page numbers, bt and block or metes and bounds, if unplatted, in the Site Data table.
Done, refer to sheet S-1.0
b. Provide the Future Land Use designation in addition to the provided Zoning District.

Done, refer to sheet S-1.0
c. Due to the only improvement and modification to the Site Plan being the parking lot, only provide Vehicular Use Area Setbacks; as such, remove setbacks for buildings from the Site Data table. Setbacks shall be stated as required and provided.
Done, refer to sheet S-1.0
d. Provide parking data in tabular form; stating required and provided parking and stating the parking ratio formula. Provide a breakdown of standard, accessible and guest parking stalls. Done, refer to sheet S-1.0
e. Provide height, setback, square footage, dwelling unit calculation based on gross lot area and existing dwelling units for the apartment building, and clearly state that no modification to the existing structure is proposed. Done, refer to sheet S-1.0
f. Provide a note stating the maximum foot-candle level at all property lines shall not exceed a maximum of 0.5 f.c. if adjacent to residential. Done, refer to sheet S-1.0
7. Zoning Information:
a. Identify the dumpster enclosure location, and provide a typical detail for the dumpster including a waste container and recycling container.
Done, refer to sheet S-1.0. dumpster is existing to remain
b. Provide typical details for regulatory signage and pavement markings demonstrating compliance with the Manual of Uniform Traffic control Devices.
Done, refer to sheet S-1.0
c. Identify Type $D$ and $F$ curbs as well as providing a typical detail of same.

Done, refer to sheet S-1.0
d. Identify method of mail delivery for the site, whether existing or proposed.

Mail kiosk located north og the dumpster
e. Identify the location of existing and proposed fire hydrants or the closest off-site locations. Done, refer to sheet S-1.0
f. Provide the open space calculations (pervious to impervious ratio) in square feet and percentages.
Done, refer to sheet S-1.0
g. Provide the Vehicular Use Area in square feet; the total impervious area of same in square feet and percentages and the total pervious area of same in square feet and percentages.
Done, refer to sheet S-1.0
8. General Application:
a. Must be completed to the best of the Applicant or their Representative's ability.

Done
b. Data provided on same shall be consistent with the Site Plan.

Done
c. Provide an original General Application. A copy shall not be accepted with submittal packages for Final TAC Review.
Done
d. Power of Attorney portion completed; however, no Representative was affirmed by signature on Page 2 of the form.
9. Provide Articles of Incorporation for Islander Apartments, LLC and Tropicana Investors, Inc. in future submittals.
10. Staff encourages Applicant to meet with surrounding homeowner's associations prior to submitting for any Board. Provide update with next submittal.

Not Done , mailings to owners will be issued directly by the Owner
11. Provide written responses to all comments with next submittal. Done , here attached

## B. ZONING

Jean-Paul W. Perez, Planning Administrator 954-921-3471

1. Pursuant to Article 9 of the City's Zoning and Land Development Regulations, entitled "Vehicular Use Area Landscaping:
a. Terminal islands must contain 190 sq . ft . of pervious area and shall measure the same length as the adjacent parking stall.
Done, refer to sheet S-1.0
b. Terminal islands shall have a one tree as spe; staff recommends canopy trees.

Done, refer to sheet L1.1, L1.2
c. $25 \%$ of the Vehicular Use Area shall be landscaped (values shall be validated in tabular form in the Site Data table as requested herein above).
Done, refer to sheet L1.1, L1.2
d. Water conservation methods as provided by the South Florida Water Management District shall be implemented on the landscape plan.
The irrigation shall be design as per Xerriscape principles as outlined in the land development code as note in the landscape drawings . refer to L1.2
2. Work with City Landscape Architect to ensure adequate landscaping is provided in accordance with the City's Landscape Specifications Manual and his professional recommendations.
Done, refer to sheet L1.1, L1.2
3. Work with City Landscape Architect regarding 'right tree, right place' for street trees under overhead powerlines along Southwest 56th Avenue.
Done, refer to sheet L1.1, L1.2
4. Indicate location of all existing mechanical equipment. Mechanical equipment shall be screened from the right-of-way and are not allowed in front yard.
No mechanical equipment is proposed under this phase of work
5. Project is required to install electric vehicle charging station infrastructure, please see Ordinance 0-2016-02.
Not addressed

## C. DESIGN

Jean-Paul W. Perez, Planning Administrator 954-921-3471

1. Break up the long wall with low plant material between the back of sidewalk along South 56th Avenue and the perimeter wall. Note this area is primarily a 5 foot utility easement, so plants with small root systems would be preferable to not disturb any lines located in the easement. Done, refer to sheet L1.1, L1.2
2. For the parking lot, consider using material with high albedo to limit absorption of sunlight and reduce urban heat island effect or consider using permeable paving material which reduces runoff and increases water penetration.
Under consideration. Will provide alternates to be considered during the bidding process
3. Utilize street trees to discourage parking and the loading of vehicles in the swale along the east side of South 56th Avenue.
Done, refer to sheet L1.1, L1.2
4. Provide manufacturer details on light poles and luminaire including cross sections with height, details on type of bulb and reflector.
The proposed new lighting will match the existing parking lighting and will provide degrees of illumination with a cot of o .5 f.c. at the property line

Terrence Comiskey AIA, Engineering Support Services Manager, 954-921-3900

1. Sheet S-10: What warrants the need for an additional 97 parking spaces, and how will they be utilized?
The proposed parking modifications will serve the current property and will improve the current conditions of the partially developed lot

No Landscape Plans were included for review.
Done, refer to sheet L1.1, L1.2

## D. LANDSCAPING

Dale Bryant, Landscape Architect 954-921-3997

1. Provide existing tree and palm information including species, estimated height and canopy/crown spread, caliper diameter of trunks, overall condition, and proposed action on a Tree Disposition Plan.
Done, refer to sheet L1.1, L1.2
2. For any trees to be removed, provide mitigation requirements on the Landscape Plan, and how they are being met. Include a tabular data chart defining applicable requirements, and demonstrate on the Landscape Plans how they are being met.
No trees are currently proposed to be removed
3. A City of Hollywood Tree Removal/Relocation Permit will be required for any existing tree removal or relocation.
No trees are currently proposed to be removed
4. Submit Landscape Plans signed and sealed by a Landscape Architect registered in the State of Florida. Landscape Plans will follow City of Hollywood's Zoning and Land Development Regulations' requirements. Florida Statute requirements in regard to Florida Friendly Landscaping, Xeriscape principles and other requirements and standards listed in the landscape manual.
Done, refer to sheet L1.1, L1.2
5. Landscape Plans should responsibly maximize shade on the expanded site and should also serve to buffer site uses and design from adjacent developments. When creating pervious spaces with structures and hardscape on the Site Plan, keep these needs in mind to reduce the number of future revisions and submittals.
Done, refer to sheet L1.1, L1.2
6. Provide an irrigation plan or expansion plan at time of Building Permit.

So noted
7. Additional comments may be forthcoming.

## E. SIGNAGE

Jean-Paul W. Perez, Planning Administrator 954-921-3471

1. Notapplicable.

## F. LIGHTING

Jean-Paul W. Perez, Planning Administrator 954-921-3471

1. Not applicable.
G. GREENBUILDING

Jean-Paul W. Perez, Planning Administrator 954-921-3471

1. Not applicable.

## H. ENVIRONMENTAL SUSTAINABILITY

Lindsey Nieratka, Environmental Sustainability Coordinator 954-921-3201

1. No comments received.
I. UTILITIES

James Rusnak, Engineer 954-921-3302
Wilford Zephyr, Engineer 954-924-2985

1. Provide civil plans for paving, grading and drainage.

## J. BUILDING

Philip Sauer, Chief Building Official 954-921-3025

1. Application is substantially compliant.

## K. ENGINEERING

Luis Lopez, City Engineer 954-921-3251
Clarissa Ip, Engineering Support Services Manager 954-921-3915

1. What is in the area labeled as "Partially Developed" in the area adjacent to Building A? Please indicate on plans.
Prior to the present Ownership the infrastructure for sewer, drainage and partial foundations for 2 additional buildings were built to some degree . all of which will be coordinated during the permit building process. Besides the parking lot expansion no additional building is being considered at this point
2. Indicate the vehicle stacking spaces provided at the gated entrance off of Plunkett Street. Use stacking area of 8.5 -feet by 19 -feet per space.
Refer to S-1.0 6 spaces indicated
3. Shift landscape island/parking drive aisle to the south to eliminate skewed intersecting drive aisle condition in the parking lot. See attached memorandum (File No. EN17-047). Done, refer to sheet S-1.0
4. Eliminate stop control located in the path of vehicular back out and consider Keep! Left signage on the landscape area. See attached memorandum (File No. EN17-047).
Done, refer to sheet S-1.0
5. Are there additional apartment units under this application?

Not at this time
6. Show the existing concrete sidewalk along Southwest 56th Avenue on plans; be sure to include width and material. Done, refer to sheet S-1.0
7. Label curbing on plan and indicate the type of curbing to be used. Done, refer to sheet S-1.0 "D" type
8. Extend curbing around the apron radii of the proposed exit only drive.
9. Provide off-street loading space, minimum 10 -feet wide by 25 -feet length with 14 -feet vertical clearance.
Done, refer to sheet S -1.0 off-street parking is existing to remain
10. All outside agency permits must be obtained prior to issuance of a Building Permit. So noted

## L. FIRE

Janet A. Washburn, Fire Marshal/Division Chief 954-921-3263

1. The review is limited to water supply and Fire Department access.

So noted
2. A hydrant flow test is required to determine the needed fire flow for the building for firefighting purposes. Contact underground utilities at 954-921-3046 to arrange the test. Once the test is completed, the civil engineer should evaluate the test and show on the plan the minimum fire flow requirements have been met per NFPA 1, 18.4.5. Include on civil drawings the locations of all existing and new fire hydrants (if required).
Not required as per conversation with the fire marshall
3. The T turnaround must be able to accommodate the length of our fire engines per NFPA 1, 18.2.3.4.4. It appears a T turnaround may be on the Site Plan, but no dimensions are given to show if our engines can turnaround. Turning radii are 28.5 -inches interior, 38 -inches centerline of the turning radius, and 45-feet exterior.
Done, refer to sheet S-1.0
4. The current vehicular exit access is too narrow and does not meet the minimum 20 -feet width requirement per NFPA 18.2.3.4.1.1.
Done, refer to sheet S-1.0
M. COMMUNITY DEVELOPMENT

Clay Milan, Community Development Manager 954-921-3271

1. Is further development of residential units planned? Not at this time
2. Is the 56th Avenue exit gated? Yes
3. Show lighting and landscaping plans. 18 ' light post indicated on Sheet S-1.0. landscape drawinfs L1.1 and L1.2 were added to this submittal
4. Suggestmeeting with Washington Park Homeowners Association.

## N. ECONOMIC DEVELOPMENT

Brian Rademacher, Corridor Redevelopment Manager 954-924-2922

1. Application is substantially compliant.
2. PARKS. RECREATION AND CULTURAL ARTS

Eric Brown, Recreation Supervisor 954-921-3404
David Vazquez, Assistant Director 954-921-3404

1. Application is substantially compliant.

## P. POLICE DEPARTMENT

Tracey Thomas, Police 954-967-4549

1. ISSUE: Crime Prevention Through Environmental Design Blueprint Review/Recommendations.
2. EXPLANATION:_The following recommendations were developed during the Crime Prevention Through Environmental Design review of the blueprints for " 5515 Plunkett Street Apartments. Street. Hollywood. Florida".
3. RECOMMENDATION: ***Note: Application is substantially compliant.
4. Note: Crime Prevention Recommendations: The following are the reviews and recommendations for the CPTED review of the blueprints for " 5515 Plunkett Street Apartments. Street. Hollywood. Florida".
5. Note: Blueprint Crime Prevention Observations/Recommendations per ACPI (American Crime Prevention Institute) reference the addressed premises.
6. CPTED Strategies
a. Per the blueprints, clear border definition of controlled space is defined by the described landscaping. Examples of border definition may include fences, shrubbery of signs in exterior areas.

## 7. ExternalLiahting

a. Parking lots, vehicle roadways, pedestrian walkways and building entryways should have "adequate" levels of illumination. The American Crime Prevention Institute recommends the following levels of external illumination:
i. -Parking Lots 3-5 foot candels
ii. -Walking Surfaces 3 f.c.
iii. -Recreational Areas 2-3 f.c.
iv. -Building Entryways 5 f.c.

So noted
b. These levels may be subject to reduction in specific circumstances where after hours use is restricted.
c. The lighting fixture identification system should enable anyone to easily report a malfunctioning fixture.

So noted
d. Exterior lighting should be controlled by automatic devices (preferably by photocell).

So noted and specified in the construction drawigs
e. Exterior lighting fixture lenses should be fabricated from polycarbonate, break-resistant materials.
So noted
f. Plant materials, particularly tree foliage, should not interfere with or obscure exterior lighting.

So noted
g. Light fixtures below $10^{\prime}$ in grade should be designed to make access to internal parts difficult (i.e. security screws, locked access panels).

Proposed lighting post are 18 ' above grade to match existing

## 8. Building!sl Perimeter Doors

a. Exterior doors not used as designated entry points, should be locked to prevent entry from the exterior.
No modifications to the existing buildings are proposed under this permit
b. Ideally, exterior doors should be equipped with electronic propped door alarms, which annunciate either locally and/or at the security office.
No modifications to the existing buildings are proposed under this permit

## c. Internal Circulation and Control

i. There should not be recessed areas in corridors that could be used for hiding or loitering.
No modifications to the existing buildings are proposed under this permit
ii. Areas under stairwells should be enclosed. No modifications to the existing buildings are proposed under this permit

## d. Corridors

i. Corridors should be well-lighted with no dark areas.

No modifications to the existing buildings are proposed under this permit
ii. Increased light, reflective paint colors, and graphics on hallway wall surfaces should be used to increase the perception of openness and constant movement. No modifications to the existing buildings are proposed under this permit
e. Fencing
i. (If used) Wrought iron fencing provides for natural surveillance within and onto the property. Ex. Parking lot and to establish a defined border definition of the entire property.
The proposed entry gate shall be alum. Pickets, the balance of the existing privacy wall is solid masonry

## f. Non-Pedestrian_Building_Entry Points

i. Sturdy fencing should enclose locations where gas and electric utilities enter buildings.
ii. Locations where gas and electric utilities enter buildings should be well lighted.
iii. Electrical service disconnects and gas valves should be equipped with locking devices.

Items i, ii, \& iii : Recommendations are noted, the scope of work however are restricyed to the expansion of the parking lot

## g. Signage

i. Please make sure areas of the premises are identified with proper signage.
9. Observed in Blueprints, Metal Fencing, Pavers, which are good examples of border definition \& (97) additional parking spaces, "Do Not Enter Sign" (proposed exit only signage), which are good examples of signage.
10. The purpose of the review is to provide security recommendations. This review is only advisory and is not intended to identify all security weaknesses or to warrant the adequacy of all present and future security measures whether or not recommended.

## Q. PUBLIC WORKS

Charles Lassiter, Environmental Services Supervisor 954-967-4207
Karen Arndt, Assistant Director 954-967-4264

1. No comments received.
R. DOWNTOWN AND BEACH CRA

Jorge Camejo, Executive Director 954-924-2980
Susan Goldberg, Deputy Director 954-924-2980

1. Not applicable.

## S. PARKING

Harold King, Parking Administrator 954-921-3535

1. No comments received.

## T. ADDITIONAL COMMENTS

Jean-Paul W. Perez, Planning Administrator 954-921-3471

1. None at this time.

The Technical Advisory Committee does not find this application substantially compliant with all applicable regulations, therefore the Applicant must resubmit for TAC review.

Please be advised, in the future any additional review by the TAC may result in the payment of additional review fees.

If these comments have not been addressed within 120 days of this dated report the application will expire. As a result, a new application and fee will be required for additional review by the TAC.

Note that any use proposed for the site shall be consistent with Zoning and Land Development Regulations.

Should you have any questions, please do not hesitate to contact your Project Planner at 954-921-
3471.

Sincerely,
Alexan Carcamo
Principal Planner

## PARKING EXPANSION FOR THE PLUNKETT STREET APARTMENTS

5515 PLUNKETT STREET , HOLLYWOOD, FLORIDA 33021


LEGAL DESCRIPTION

CERTIFIED TO:

 OLD RePUBLC NAICO
SITE DATA





## WNERTENANT <br>  <br> Contacri iexancrosman

## $\frac{\mathrm{ARCHITECT}}{\text { RUBEND BOLAN }}$ <br>  



ATYPICAL "D" CURB DETAIL 5 S.1.0

| INDEX OF DRAWINGS |  |
| :--- | :--- |
| S-1.0 | ARCHITECTURAL SITE PLAN |
| --- | SURVEY |
| L.1.1 | LANOSCAPE PLAN |
| L1.2 | LANOSCAPE PLAN |
| $C-1$ | PANIN , GRADING \& DRANAGEE PLAN |
|  |  |
|  |  |
|  |  |
|  |  |


|  |
| :--- | :--- |




LL1.1 Landscape Plan

## Date Created: <br> Date Created March 10, 2017

Plant Quantities and Specifications


KGLA kieser group
landscape So30 Champion Builevara


$\qquad$


Landscape Code Requirements

| AREA | Aaplucaton | Reaureo | Provol |
| :---: | :---: | :---: | :---: |
| Peevous area | ${ }_{72,97}$ |  |  |
| ANOSCAPEAREA | $255 \%$ Of VU.A A ANOSCAPEO | 15.55 | 115,5995\% |
|  | (62 23 4 5 F $\times$ 25\%\% |  |  |
| Tree reuvement | One Eld Rer temman licano |  |  |
|  | ONE [1P Per 1.000 ST Of Perkuous |  | 27 Exstinc) 45 PPRovioe |
| Shruv reuurement |  |  |  |
|  |  |  |  |
|  |  |  |  |
| Seatromites |  |  |  |
| Sinterkown mes |  | ${ }^{12,6}$ |  |
|  | Sourten froviace -(19450) | ${ }^{3} 88$ | 4 exstinc |
| Natives |  |  |  |
|  |  |  |  |
|  | (171 $\times 5084$ | ${ }^{8}$ |  |



## solid state Area lighting

## MOZART SERIES-LED

S P E C I F I C A T I O N S

## FIXTURE HOUSING

One piece unitized precise heavy wall cast aluminum construction comprised of low copper ( $<0.2 \% \mathrm{Cu}$ ) aluminum. Hood is fastened to the Housing with a stainless steel hinge and secured with a tool-less stainless steel latch $180^{\circ}$ opposite the hinge. Housing and Hood is sealed with an extruded closed cell silicone gasket. Driver/wiring access through top of Mounting Hub. Hub accommodates a $27 / 8^{\prime \prime} \times 3^{\prime \prime}$ tenon. All exposed hardware is stainless steel.

## VLED OPTICAL MODULE

Low copper A356 alloy (< $0.2 \%$ copper) cast aluminum housing. Integrated clear tempered 3/16" glass lens sealed with a continuous silicone gasket protects emitters (LED's) and emitter Reflector-Prism optics, and seals the module from water intrusion and environmental contaminants. Reflector-Prism injection molded from H12 acrylic. Each Reflector-Prism has indexing pins for aiming and is secured to an optical plate made of matte black anodized aluminum. The optical plate locates a Reflector-Prism over each emitter. Reflector-Prisms are secured to the optical plate with a UV curing adhesive. The Reflector-Prisms are arrayed to produce IES Type II, III, IV, and V-SQ distributions. The entire Optical Module is field rotatable in $90^{\circ}$ increments. Both module and drivers are factory wired using water resistant, insulated cord. Lens, module and drivers are field replaceable.

## LED EMITTERS

High output LED's are utilized with drive currents ranging from 350 mA to 700 mA . 70 CRI Minimum. LED's are available in standard Neutral White (4000K), or optional Cool White (5000K) or Warm White (3000K). Consult Factory for other LED options.

## LED DRIVER

UL and CUL recognized High Power Factor, Constant Current LED drivers operate on input voltages from $120-277,50 / 60 \mathrm{hz}$, or $347-480 \mathrm{~V} 50 / 60 \mathrm{hz}$ and utilizes $0-10 \mathrm{v}$ dimming. Driver is mechanically fastened to a retaining bracket. Main power quick disconnect provided. Surge protector supplied for field installation at the most conveniently serviceable location.

## FINISH

Electrostatically applied TGIC Polyester Powder Coat on substrate prepared with 20 PSI power wash at $140^{\circ} \mathrm{F}$. Four step sand blast and iron phosphate pretreatment for protection and paint adhesion. $400^{\circ} \mathrm{F}$ bake for maximum hardness and durability. Texture finish is standard.

## FIXTURE TYPE:



Fitter supplied to fit over $2^{7 / 8^{\prime \prime}} \times 3^{\prime \prime}$ ( $73 \mathrm{~mm} \times 76 \mathrm{~mm}$ ) tennon.

| FIXTURE | A | B |
| :---: | :---: | :---: |
| MOZ | $26^{\prime \prime}$ | $34.5^{\prime \prime}$ |
|  | 660 mm | 876 mm |
| MOZM | $20^{\prime \prime}$ | $26.5^{\prime \prime}$ |
|  | 508 mm | 673 mm | wet location

## MOZART SERIES - LED



ALUMINUM CONSTRUCTION. FOR ADDITIONAL ARM
AND/OR WALL MOUNT OPTIONS SEE ARM SECTION.


| LED COUNT | $\begin{aligned} & \text { SOURCE } \\ & \text { TYPE } \end{aligned}$ | SOURCE | INITIAL LUMENS 4000K | INITIAL LUMENS 3000K | INITIAL LUMENS 5000K | L70 GREATER THAN (HR) | STARTING TEMP. | SYSTEM <br> WATTS | VOLTS | MAX INPUT AMPS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 48 | LED | 48 V LED ${ }^{\text {® }}$ Optical Module-350mA | $\begin{aligned} & 4,241- \\ & 4,760 \end{aligned}$ | $\begin{aligned} & 3,731- \\ & 4,187 \end{aligned}$ | $\begin{aligned} & 4,337- \\ & 4,868 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 55 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.46 \\ & 0.20 \\ & 0.16 \end{aligned}$ |
| 48 | LED | 48 VLED Optical Module-525mA | $\begin{aligned} & 5,871- \\ & 6,557 \end{aligned}$ | $\begin{aligned} & 5,152- \\ & 5,755 \end{aligned}$ | $\begin{aligned} & 6,009- \\ & 6,711 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 79 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 0.29 \\ & 0.23 \end{aligned}$ |
| 48 | LED | 48 V LED Optical Module-700mA | $\begin{aligned} & 7,515- \\ & 8,131 \end{aligned}$ | $\begin{aligned} & 6,579- \\ & 7,119 \end{aligned}$ | $\begin{aligned} & 7,696- \\ & 8,327 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 109 | $\begin{aligned} & 120 \\ & 277 \end{aligned}$ | $\begin{aligned} & 0.91 \\ & 0.40 \\ & 0.32 \end{aligned}$ |
| 64 | LED | 64 VLED Optical Module - 350mA | $\begin{aligned} & 5,255- \\ & 5,898 \end{aligned}$ | $\begin{aligned} & 4,623- \\ & 5,189 \end{aligned}$ | $\begin{aligned} & 5,373- \\ & 6,031 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 70 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.59 \\ & 0.26 \\ & 0.21 \end{aligned}$ |
| 64 | LED | 64 VLED Optical Module-525mA | $\begin{aligned} & 7,393- \\ & 8,257 \end{aligned}$ | $\begin{aligned} & \text { 6,488 - } \\ & 7,246 \end{aligned}$ | $\begin{aligned} & 7,566- \\ & 8,451 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 108 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.90 \\ & 0.39 \\ & 0.32 \end{aligned}$ |
| 64 | LED | 64 VLED Optical Module - 700mA | $\begin{aligned} & 9,927- \\ & 10,405 \end{aligned}$ | $\begin{aligned} & 8,691- \\ & 9,110 \end{aligned}$ | $\begin{aligned} & 10,166- \\ & 10,655 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 134 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 1.12 \\ & 0.49 \\ & 0.39 \end{aligned}$ |
| 80 | LED | 80 V LED ${ }^{*}$ Optical Module - 350 mA | $\begin{aligned} & 7,131- \\ & 7,452 \end{aligned}$ | $\begin{aligned} & 6,273- \\ & 6,556 \end{aligned}$ | $\begin{aligned} & 7,292- \\ & 7,620 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 85 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.31 \\ & 0.25 \end{aligned}$ |
| 80 | LED | 80 VLED ${ }^{\circ}$ Optical Module-525mA | $\begin{aligned} & 9,994- \\ & 10,444 \end{aligned}$ | $\begin{aligned} & 8,770- \\ & 9,166 \end{aligned}$ | $\begin{aligned} & 10,228- \\ & 10,689 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 130 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 1.09 \\ & 0.47 \\ & 0.38 \end{aligned}$ |
| 100 | LED | 100 V LED ${ }^{\circ}$ Optical Module - 350mA | $\begin{aligned} & 8,862- \\ & 9,260 \end{aligned}$ | $\begin{aligned} & 7,796- \\ & 8,146 \end{aligned}$ | $\begin{aligned} & 9,062- \\ & 9,469 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 109 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.91 \\ & 0.40 \\ & 0.32 \end{aligned}$ |
| 120 | LED | 120 VLED Optical Module - 350mA | $\begin{aligned} & \text { 10,634-1 } \\ & 11,112 \end{aligned}$ | $\begin{aligned} & 9,355- \\ & 9,776 \end{aligned}$ | $\begin{aligned} & 10,874- \\ & 11,363 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 130 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 1.09 \\ & 0.47 \\ & 0.38 \end{aligned}$ |

NOTES:

1. Max Input Amps is the highest of starting, operating, or open circuit currents
2. Lumen values for LED Modules vary according to the distribution type
3. System Watts includes the source watts and all driver components.
4. Fuse value should be sufficient to protect all wiring components. For electronic driver and LED component protection, use $10 \mathrm{KV}-20 \mathrm{KV}$ surge suppressors.
5. L70(10K) - TM-21 $6 x$ rule applied

L70(10K) - Calculated $=244,000 @ 700 \mathrm{~mA}$
WARNING: All fixtures must be installed in accordance with local codes or the National Electrical Code. Failure to do so may result in serious personal injury.

## SOLID STATE AREA LIGHTING

## MOZART-WA SERIES-LED

S P E C I F I C A T I O N S

## FIXTURE HOUSING

One piece unitized precise heavy wall cast aluminum construction comprised of low copper ( $<0.2 \% \mathrm{Cu}$ ) aluminum. Hood is fastened to the Housing with a stainless steel hinge and secured with a tool-less stainless steel latch $180^{\circ}$ opposite the hinge. Housing and Hood is sealed with an extruded closed cell silicone gasket. White Acrylic enclosure is gasketed at the fixture Mounting Hub and crown with an extruded closed cell silicone gasket. Driver/wiring access is inside the enclosure and accesses through the top of the Mounting Hub. Hub accommodates a $2^{1 / 8} 8^{\prime \prime} \times 3^{\prime \prime}$ tenon. All exposed hardware is stainless steel.

## LED POWER ARRAY ${ }^{\text {TM }}$

Three-dimensional array of individual LED Tubes fastened to a retaining plate. Each LED Tube consists of circuit board populated with a multiple of LED's and is mechanically fastened to a radial aluminum heat sink. A diffuse acrylic lens and end cap protects each LED Tube's internal components.

VERTICAL POWER ARRAYTM: LED Tubes are aligned vertically and equally arranged radially to produce an even raw light distribution that simulates standard light sources. Produces a minimal glare, symmetric diffuse light distribution. Used in conjunction with a smooth, white, acrylic diffusing enclosure.

## LED EMITTERS

High output LED's are utilized with drive currents ranging from 350 mA to 525 mA . 70 CRI Minimum. LED's are available in standard Neutral White (4000K), or optional Cool White (5000K) or Warm White (3000K). Consult Factory for other LED options.

## LED DRIVER

UL and CUL recognized High Power Factor, Constant Current LED drivers operate on input voltages from 120-277VAC, $50 / 60 \mathrm{hz}$ or $347-480 \mathrm{~V}, 50 / 60 \mathrm{hz}$ and utilizes $0-10 \mathrm{v}$ dimming. Driver is mechanically fastened to a retaining bracket. Main power quick disconnect provided. Surge protector supplied for field installation at the most conveniently serviceable location.

## FINISH

Electrostatically applied TGIC Polyester Powder Coat on substrate prepared with 20 PSI power wash at $140^{\circ} \mathrm{F}$. Four step sand blast and iron phosphate pretreatment for protection and paint adhesion. $400^{\circ} \mathrm{F}$ bake for maximum hardness and durability. Texture finish is standard.

## FIXTURE TYPE:



PATENT PENDING


Fitter supplied to fit over $2^{7 / 8} \mathbf{" P}^{\prime X} 3^{\prime \prime}$ ( $73 \mathrm{~mm} \times 76 \mathrm{~mm}$ ) tennon.

| FIXTURE | A | B |
| :---: | :---: | :---: |
| MOZ-WA | $26 "$ | $34.5^{\prime \prime}$ |
|  | 660 mm | 876 mm |
| MOZM-WA | $20 "$ <br> 508 mm | $26.5^{\prime \prime}$ <br> 673 mm |

MOZART-WA SERIES - LED


## MOZART-WA SERIES - VPA LED

| LED COUNT | $\begin{aligned} & \text { SOURCE } \\ & \text { TYPE } \end{aligned}$ | SOURCE | INITIAL LUMENS 4000K | INITIAL LUMENS 3000K | INITIAL LUMENS 5000K | L70 GREATER THAN (HR) | STARTING TEMP. | SYSTEM WATTS | VOLTS | MAX INPUT AMPS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 24 | LED | 24 VPA LED Power Array - 350mA | 2,453 | 2,158 | 2,508 | 60,000+ | $-20^{\circ} \mathrm{F}$ | 37 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{array}{r} 0.23 \\ 0.10 \\ <0.10 \end{array}$ |
| 24 | LED | 24 VPA LED Power Array - 525mA | 3,434 | 3,021 | 3,511 | 60,000+ | $-20^{\circ} \mathrm{F}$ | 55 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.34 \\ & 0.15 \\ & 0.12 \end{aligned}$ |
| 32 | LED | 32 VPA LED Power Array - 350mA | 3,271 | 2,877 | 3,344 | 60,000+ | $-20^{\circ} \mathrm{F}$ | 45 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 0.13 \\ & 0.11 \end{aligned}$ |
| 32 | LED | 32 VPA LED Power Array - 525mA | 4,579 | 4,028 | 4,682 | 60,000+ | $-20^{\circ} \mathrm{F}$ | 66 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 0.20 \\ & 0.16 \end{aligned}$ |
| 36 | LED | 36 VPA LED Power Array - 350mA | 3,679 | 3,236 | 3,762 | 60,000+ | $-20^{\circ} \mathrm{F}$ | 54 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.35 \\ & 0.15 \\ & 0.12 \end{aligned}$ |
| 36 | LED | 36 VPA LED Power Array - 525 mA | 5,151 | 4,531 | 5,267 | 60,000+ | $-20^{\circ} \mathrm{F}$ | 79 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.51 \\ & 0.23 \\ & 0.18 \end{aligned}$ |
| 48 | LED | 48 VPA LED Power Array - 350mA | 4,906 | 4,316 | 5,017 | 60,000+ | $-20^{\circ} \mathrm{F}$ | 67 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 0.20 \\ & 0.16 \end{aligned}$ |
| 48 | LED | 48 VPA LED Power Array - 525mA | 6,868 | 6,042 | 7,023 | 60,000+ | $-20^{\circ} \mathrm{F}$ | 98 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 0.29 \\ & 0.23 \end{aligned}$ |
| 64 | LED | 64 VPA LED Power Array - 350mA | 6,541 | 5,754 | 6,689 | 60,000+ | $-20^{\circ} \mathrm{F}$ | 89 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.60 \\ & 0.26 \\ & 0.21 \end{aligned}$ |
| 64 | LED | 64 VPA LED Power Array - 525 mA | 9,157 | 8,056 | 9,364 | 60,000+ | $-20^{\circ} \mathrm{F}$ | 131 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.88 \\ & 0.38 \\ & 0.31 \end{aligned}$ |

NOTES:

1. Max Input Amps is the highest of starting, operating, or open circuit currents
2. Lumen values for LED Modules vary according to the distribution type
3. System Watts includes the source watts and all driver components.
4. Fuse value should be sufficient to protect all wiring components. For electronic driver and LED component protection, use $10 \mathrm{KV}-20 \mathrm{KV}$ surge suppressors.
5. L70(10K) - TM-21 $6 x$ rule applied

L70(10K) - Calculated $=244,000 @ 700 \mathrm{~mA}$
WARNING: All fixtures must be installed in accordance with local codes or the National Electrical Code. Failure to do so may result in serious personal injury.

## SOLID STATE AREA LIGHTING

## MOZART-CPA SERIES-LED

S P E C I F I C A T I O N S

## FIXTURE HOUSING

One piece unitized precise heavy wall cast aluminum construction comprised of low copper (A356 alloy, <0.2\% Cu) aluminum. Hood is fastened to the Housing with a stainless steel hinge and secured with a tool-less stainless steel latch $180^{\circ}$ opposite the hinge. Housing and Hood is sealed with an extruded closed cell silicone gasket. Clear Patterned Acrylic enclosure is gasketed at the fixture Mounting Hub and crown with an extruded closed cell silicone gasket. Driver/wiring access is inside the enclosure and accesses through the top of the Mounting Hub. Hub accommodates a $27 / 8^{\prime \prime} \times 3^{\prime \prime}$ tenon. All exposed hardware is stainless steel.

## LED POWER ARRAY ${ }^{\top M}$

Three-dimensional array of individual LED Tubes fastened to a retaining plate. Each LED Tube consists of circuit board populated with a multiple of LED's and is mechanically fastened to a radial aluminum heat sink. A diffuse acrylic lens and end cap protects each LED Tube's internal components.

ANGLED POWER ARRAY™ : Micro-Reflectors mounted around each LED control the raw emitter output. LED Tubes are rotated on their vertical axis, angled on their horizontal axis, and arrayed to produce highly efficient IES Distribution Types II, III, IV and V. Used in conjunction with a clear patterned acrylic enclosure.

VERTICAL POWER ARRAYTM: LED Tubes are aligned vertically and equally arranged radially to produce an even raw light distribution that simulates standard light sources. Produces a minimal glare, symmetric diffuse light distribution. Used in conjunction with prismatic glass refractor to produce symmetric or asymmetric distributions and surrounded by a Clear Patterned Acrylic enclosure.

## LED EMITTERS

High output LED's are utilized with drive currents ranging from 350 mA to 525 mA . 70CRI Minimum. LED's are available in standard Neutral White (4000K), or optional Cool White (5000K) or Warm White (3000K). Consult Factory for other LED options.

## EED DRIVER

UL and CUL recognized High Power Factor, Constant Current LED drivers operate on input voltages from 120-277VAC, $50 / 60 \mathrm{hz}$. Driver is mechanically fastened to a retaining bracket. Main power quick disconnect provided. Surge protector supplied for field installation at the most conveniently serviceable location.

## FINISH

Electrostatically applied TGIC Polyester Powder Coat on substrate prepared with 20 PSI power wash at $140^{\circ} \mathrm{F}$. Four step sand blast and iron phosphate pretreatment for protection and paint adhesion. $400^{\circ} \mathrm{F}$ bake for maximum hardness and durability. Texture finish is standard.


MOZ-CPA-LED
PATENT PENDING


Fitter supplied to fit over $2^{7 / 8^{\prime \prime}} \times 3^{\prime \prime}$ ( $73 \mathrm{~mm} \times 76 \mathrm{~mm}$ ) tennon.

| FIXTURE | A | B |
| :---: | :---: | :---: |
| MOZ-CPA | $26^{\prime \prime}$ | $34.5^{\prime \prime}$ |
|  | 660 mm | 876 mm |
| MOZM-CPA | $20^{\prime \prime}$ <br> 508 mm | $26.5^{\prime \prime}$ <br> 673 mm |

MOZART-CPA SERIES - LED


## MOZART-CPA SERIES - APA LED Lamp/electrical guide

| LED COUNT | SOURCE TYPE | SOURCE | INITIAL LUMENS 4000K | INITIAL LUMENS 3000K | INITIAL LUMENS 5000K | L70 GREATER THAN (HR) | STARTING TEMP. | SYSTEM WATTS | VOLTS | MAX INPUT AMPS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | LED | 32 APA LED Power Array - 350mA | $\begin{aligned} & 2,343- \\ & 2,396 \end{aligned}$ | $\begin{aligned} & 2,061- \\ & 2,108 \end{aligned}$ | $\begin{aligned} & 2,396 \\ & 2,450 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 37 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.31 \\ & 0.14 \\ & 0.11 \end{aligned}$ |
| 32 | LED | 32 APA LED Power Array - 525 mA | $\begin{aligned} & 3,280- \\ & 3,354 \end{aligned}$ | $\begin{aligned} & 2,886- \\ & 2,951 \end{aligned}$ | $\begin{aligned} & 3,354- \\ & 3,430 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 55 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.46 \\ & 0.20 \\ & 0.16 \end{aligned}$ |
| 40 | LED | 32 APA LED Power Array - 350mA | $\begin{aligned} & 3,469- \\ & 3,771 \end{aligned}$ | $\begin{aligned} & 3,052- \\ & 3,317 \end{aligned}$ | $\begin{aligned} & 3,457- \\ & 3,856 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 45 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 0.17 \\ & 0.13 \end{aligned}$ |
| 40 | LED | 32 APA LED Power Array - 525 mA | $\begin{aligned} & 4,856- \\ & 5,279 \end{aligned}$ | $\begin{aligned} & 4,272- \\ & 4,644 \end{aligned}$ | $\begin{aligned} & 4,966- \\ & 5,398 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 66 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.55 \\ & 0.24 \\ & 0.20 \end{aligned}$ |
| 48 | LED | 32 APA LED Power Array - 350 mA | $\begin{aligned} & 3,515- \\ & 3,594 \end{aligned}$ | $\begin{aligned} & 3,092- \\ & 3,162 \end{aligned}$ | $\begin{aligned} & 3,594- \\ & 3,675 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 54 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 0.20 \\ & 0.16 \end{aligned}$ |
| 48 | LED | 32 APA LED <br> Power Array <br> - 525 mA | $\begin{aligned} & 4,921 \\ & 5,032 \end{aligned}$ | $\begin{aligned} & 4,329- \\ & 4,426 \end{aligned}$ | $\begin{aligned} & 5,032- \\ & 5,145 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 79 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 0.29 \\ & 0.23 \end{aligned}$ |
| 60 | LED | 32 APA LED Power Array - 350mA | $\begin{aligned} & 5,203- \\ & 5,656 \end{aligned}$ | $\begin{aligned} & 4,577- \\ & 4,975 \end{aligned}$ | $\begin{aligned} & 5,321- \\ & 5,783 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 67 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 0.25 \\ & 0.20 \end{aligned}$ |
| 60 | LED | 32 APA LED Power Array - 525mA | $\begin{aligned} & 7,285- \\ & 7,918 \end{aligned}$ | $\begin{aligned} & 6,408- \\ & 6,966 \end{aligned}$ | $\begin{aligned} & 7,449-1 \\ & 8,097 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 98 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.82 \\ & 0.36 \\ & 0.29 \end{aligned}$ |
| 80 | LED | 32 APA LED Power Array - 350mA | $\begin{aligned} & \text { 6,938 - } \\ & 7,541 \end{aligned}$ | $\begin{aligned} & 6,103- \\ & 6,634 \end{aligned}$ | $\begin{aligned} & \text { 7,094 - } \\ & 7,711 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 89 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.75 \\ & 0.33 \\ & 0.26 \end{aligned}$ |
| 80 | LED | 32 APA LED Power Array - 525mA | $\begin{aligned} & 9,713- \\ & 10,557 \end{aligned}$ | $\begin{aligned} & 8,544- \\ & 9,287 \end{aligned}$ | $\begin{aligned} & 9,932- \\ & 10,796 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 131 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 1.10 \\ & 0.48 \\ & 0.38 \end{aligned}$ |

## NOTES:

1. Max Input Amps is the highest of starting, operating, or open circuit currents
2. Lumen values for LED Modules vary according to the distribution type
3. System Watts includes the source watts and all driver components.
4. Fuse value should be sufficient to protect all wiring components. For electronic driver and LED component protection, use 10KV - 20KV surge suppressors.
5. L70(10K) - TM-21 $6 x$ rule applied

L70(10K) - Calculated $=244,000 @ 700 \mathrm{~mA}$
WARNING: All fixtures must be installed in accordance with local codes or the National Electrical Code. Failure to do so may result in serious personal injury.

## MOZART-CPA SERIES - GRV LED Lamp/electrical guide

| LED COUNT | SOURCE TYPE | SOURCE | INITIAL <br> LUMENS - <br> 4000K | INITIAL LUMENS 3000K | INITIAL LUMENS 5000K | L70 GREATER THAN (HR) | STARTING TEMP. | SYSTEM WATTS | VOLTS | MAX INPUT AMPS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 24 | LED | 24 GRV/VPA LED Power Array - 350 mA | $\begin{aligned} & 1,922- \\ & 1,966 \end{aligned}$ | $\begin{aligned} & 1,687- \\ & 1,726 \end{aligned}$ | $\begin{aligned} & 1,967- \\ & 2,012 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 26 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.22 \\ & 0.10 \\ & 0.08 \end{aligned}$ |
| 24 | LED | 24 GRV/VPA LED Power Array - 525mA | $\begin{aligned} & 2,787- \\ & 2,852 \end{aligned}$ | $\begin{aligned} & 2,446- \\ & 2,503 \end{aligned}$ | $\begin{aligned} & 2,853- \\ & 2,919 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 39 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.33 \\ & 0.15 \\ & 0.12 \end{aligned}$ |
| 36 | LED | 36 GRV/VPA LED Power Array - 350mA | $\begin{aligned} & 2,883- \\ & 2,949 \end{aligned}$ | $\begin{aligned} & 2,531- \\ & 2,589 \end{aligned}$ | $\begin{aligned} & 2,951- \\ & 3,019 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 39 | $\begin{aligned} & 120 \\ & 277 \end{aligned}$ | $\begin{aligned} & 0.33 \\ & 0.15 \\ & 0.12 \end{aligned}$ |
| 36 | LED | 36 GRV/VPA LED Power Array - 525 mA | $\begin{aligned} & 4,180- \\ & 4,278 \end{aligned}$ | $\begin{aligned} & 3,669- \\ & 3,755 \end{aligned}$ | $\begin{aligned} & 4,278- \\ & 4,379 \end{aligned}$ | 60,000+ | $-20^{\circ} \mathrm{F}$ | 59 | $\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 0.22 \\ & 0.18 \end{aligned}$ |

## NOTES:

1. Max Input Amps is the highest of starting, operating, or open circuit currents
2. Lumen values for LED Modules vary according to the distribution type
3. System Watts includes the source watts and all driver components.
4. Fuse value should be sufficient to protect all wiring components. For electronic driver and LED component protection, use $10 \mathrm{KV}-20 \mathrm{KV}$ surge suppressors.
5. L70(10K) - TM-21 $6 x$ rule applied

L70(10K) - Calculated $=244,000 @ 700 \mathrm{~mA}$

WARNING: All fixtures must be installed in accordance with local codes or the National Electrical Code. Failure to do so may result in serious personal injury.

