PLANNING DIVISION

File No. (internal use only):_

GENERAL APPLICATION

2600 Hollywood Boulevard Room 315 Hollywood, FL 33022

APPLICATION TYPE (CHECK ONE):

	AFFERENTIA OF TIPE (CIECK OF	NC).			
	I Technical Advisory Committee	Historic Preservation Board			
	City Commission	Planning and Development Board			
FLORIDA	Date of Application: 4/17/2023				
Tel: (954) 921-3471	Location Address: 3090 Sherman Street,	Hollywood, FL			
Fax: (954) 921-3347	Lot(s): See attached Legal Block(s):	Subdivision:			
	Folio Number(s): 514208160010				
	Zoning Classification: IM-1	Land Use Classification Industrial			
This application must be	Existing Property Use. Self-storage facility	So Et/Number of Units: 166,322 S.F.			
completed in full and	Is the request the result of a violation noti	ce2() Yes (X No If yes attach a copy of violation			
submitted with all documents to be placed on a Board or	Has this property been procented to the	City before? If yes, check at that apply and provide File			
Committee's agenda.	Number(s) and Resolution(s): TAC (Prelin	ninary) 22-DP-74			
	Economic Roundtable	Advisory Committee Historic Preservation Board			
The applicant is responsible	City Commission	and Development			
checklist for each type of	Evelopetion of Degreest, Site Plan approve	al for removal of Buildinos D. R. and T for 9 410 Souare feet			
application.	New construction of three-story climate con	strolled celf storage building of 01 485 Square feet			
Applicant(s) or their		01 495 85			
present at all Board or	Number of units/rooms:	Sq Ft:			
Committee meetings.	Value of Improvement: \$9,000,000 Estimated Date of Completion: 2024				
	Will Project be Phased? () Yes (x)No	If Phased, Estimated Completion of Each Phase			
At least one set of the					
submitted plans for each application must be signed	Name of Current Property Owner: PPF S	SS 3090 Sheridan Street LLC			
and sealed (i.e. Architect or	Address of Property Owner 3384 Peachtr	ee Road NE, Suite 400, Atlanta, GA 30326			
Engineer).	Telephone ⁻ 631-539-0200 Eav: 631-	539-0206 Email Address sbonilla@safeguardit.com			
	Name of Consultant/Representative/Tena	ent (circle one)- Julian Bobilev, AICP			
Documents and forms can be accessed on the City's website	Address 200 E Broward Blvd, Suite 1800, Ft L	auderdale, FL 33301 Telephone, 954-527-2485			
at	Fax: Email Addres	iulian.bobilev@gmlaw.com			
http://www.hollywoodfl.org/Do	Date of Purchase: June 22, 2015 Is the	are an option to purchase the Property? Yes () No (X)			
cumentCenter/Home/View/21	If Yes. Attach Copy of the Contract.				
	List Anvone Else Who Should Receive N	otice of the Hearing. Melissa Ross			
88	Ross Engineering, Inc.	Address: 3325 S. University Dr. Suite 111. Davie. FL 3332			
		Email Address: mross@rossengineers.com			
The second					
10		Sec. 1			

CERTIFICATION OF COMPLIANCE WITH APPLICABLE REGULATIONS

The applicant/owner(s) signature certifies that he/she has been made aware of the criteria, regulations and guidelines applicable to the request. This information can be obtained in Room 315 of City Hall or on our website at www.hollywoodfl.org. The owner(s) further certifies that when required by applicable law, including but not limited to the City's Zoning and Land Development Regulations, they will post the site with a sign provided by the Office of Planning and Development Services. The owner(s) will photograph the sign the day of posting and submit photographs to the Office of Planning and Development Services as required by applicable law. Failure to post the sign will result in violation of State and Municipal Notification Requirements and Laws.

(I)(We) certify that (I) (we) understand and will comply with the provisions and regulations of the City's Zoning and Land Development Regulations, Design Guidelines, Design Guidelines for Historic Properties and City's Comprehensive Plan as they apply to this project. (I)(We) further certify that the above statements and drawings made on any paper or plans submitted herewith are true to the best of (my)(our) knowledge. (I)(We) understand that the application and attachments become part of the official public records of the City and are not returnable.

Signature of Current Owner:	Date: <u>4/13/202</u> 3
PRINT NAME:	Date: 4/13/2023
Signature of Consultant/Representative:	Date: <u>4/14/2</u> 023
PRINT NAME: Julian Bobilev, Greenspoon Marder	Date: <u>4/14/2023</u>
Signature of Tenant:	Date:
PRINT NAME:	Date:
Current Owner Power of Attorney	
I am the current owner of the described real property and that I am aware of <u>Site Plan Approval</u> to my property, which is hereby m Julian Boblev, AICP to be my legal representative before the <u>T</u> Committee) relative to all matters concerning this application.	of the nature and effect the request for nade by me or I am hereby authorizing <u>rechnical Advisory Committee</u> (Board and/or
Sworn to and subscribed before me this <u>1346</u> day of <u>Appl</u> 2073 <u>Notary Public</u> - State of Florida Commission # GG 320253 #v Corm. Expires May 5, 2023	Signature of Current Owner James Gooran

My Commission Expires 15 23 (Check One) Personally known to me; OR ____ Produced Identification

State of Florida

-

2

April 17, 2023

City of Hollywood Government Development Services Planning Division 2600 Hollywood Boulevard, Room 315 Hollywood FL 33022 Attn: Tasheema Lewis

Re:	Technical Advisory Committee Report
Project:	Safeguard Hollywood
Folio Number:	514208160010
File #:	22-DP-74
Address:	3090 Sherman Street Hollywood FL, 33021

Dear Ms. Lewis:

On behalf of the Applicant, PPF SS 3090 Sheridan Street, we are respectfully submitting the response to comments issued on February 17, 2023, for the Technical Advisory Committee Application. Please see the comments from the Planning Services Department in *italics* and their respective responses below in **bold**.

Application Submittal:

1. Provide plat determination letter from the County. Should platting be necessary, prior to Final TAC submittal County Plat comments are required. Plat shall be submitted for recordation prior to submitting for Planning and Development Board. Include several copies of plat documents in future submittals.

RESPONSE: The site has already been platted and thus does not need to be replatted. A copy of the Taft Street Industrial Park plat (PB 122-25) has been included with this application.

Separately, we submitted a plat note amendment application to the Engineering Dept. on 3/16. Per our discussion at the DRC, in case the plat note amendment lags behind the site plan, City can approve the site plan with a condition that the plat note amendment be recorded prior to building permit issuance.

2. Application has incorrect folio number for 3090 Sherman Street. Update application to reflect the correct folio number.

RESPONSE: Please find the Final Technical Advisory Committee application attached with 3090 Sherman Street and Folio Number 514208160010.

3. Ownership & Encumbrance Report (O&E):

a. O&E Report does not indicate time of platting. Need to indicate it was searched from 1953 or time of platting (earliest of the two).

b. Must be dated within 30 days of submittal packet.

c. Work with Engineering Division to ensure the O&E is accurate and all easements and dedications are indicated.

RESPONSE: O&E Report was searched from earliest possible records, which is <u>earlier</u> than either 1953 or time of platting and thus meets the City's requirement. The O&E report was also dated within 30 days of submittal.

4. Alta Survey:

a. Shall be based on and dated after O&E. Ensure that O&E report is specifically referenced.

b. Work with the Engineering Division to ensure the survey includes the appropriate elements such as all easements and dedications are indicated. **RESPONSE: The ALTA Survey is based on and dated after O&E Report.**

5. Site Plan:

a. Cover Sheet including the name of development, page index, Preliminary meeting date, title block and location map needed for site plans.

b. Label property lines.

c. Provide dimensions of existing parking stalls and new parking stalls.

d. Ensure that all plumbing, mechanical and electrical fixtures, and equipment are indicated on Site Plan and Elevations.

e. It appears the West elevation is the entrance to the building. Indicate walkway areas on the site plan.

RESPONSE:

- a. The Cover Sheet includes the name of development, page index, preliminary meeting dates, title block and location maps.
- b. The property lines have been labeled on the engineering and architectural site plans.
- c. The dimensions of existing and new parking stalls have been added to the plans.
- d. The architectural site plan includes Note 1 for the plumbing, mechanical, and electrical fixtures, and equipment.
- e. The walkway has been indicated on the site plans.
- 6. Site Data:

a. 20' setback required for IM-1 districts that abuts a residential area.

RESPONSE: Both the engineering and architectural site plans show the 20' setback for the west property line.

- Complete and submit to Broward County School Board an impact fee application prior to submitting for Board consideration. Ensure that the application has not expired at the time of Board Consideration Website: <u>https://www.browardschools.com/cms/lib/FL01803656/Centricity/Domain/13479/Pub</u> <u>licSchoolImpactApplication1.pdf</u>.
 RESPONSE: The project does not propose dwelling units and thus a public school impact application is not needed.
- 8. Indicate past, current and future meeting dates as they happen (not submittal dates) on Cover Sheet. Indicate specific Board/Committee (i.e. TAC, PDB, etc.) For future Board/Committee dates not known, leave blank until staff has advised of next meeting date.

RESPONSE: Please see the Cover Sheet prepared by Ross Engineering for current and future meetings dates.

9. A public participation outreach meeting shall be required for Land Use, Rezoning, Special Exception, and Site Plan requests. Applicants shall conduct at least one public participation outreach meeting and provide mailed written notice to all property owners and certified/registered civic and neighborhood association(s) within 500 feet of the proposed project. Fifteen days prior to the meeting, the applicant shall mail such notice and post a sign on the property, including the date, time, and place of the public participation outreach meeting. Such meeting shall occur prior to the applicable Committee, Board or City Commission submittal and the Applicant shall include in its application packet a letter certifying the date(s), time(s), location(s), a copy of the sigin sheet, presentation material and general summary of the discussion, including comments expressed during the meeting(s).

The following Civic Association are located within 500 feet project site. a. Liberia

b. North Central Civic Association

Visit http://www.hollywoodfl.org/204/Neighborhood-Association-Contact-List for Contact Information.

RESPONSE: We will hold a public participation meeting prior to Planning and Zoning Board.

- 10. Additional comments may be forthcoming. RESPONSE: Acknowledged.
- *11. Provide written responses to all comments with next submittal.* **RESPONSE: Acknowledged.**

<u>Zoning:</u>

1. Landscaped buffer (measured from building base) along street frontages required. It shall be equal to 5 percent of lot depth, with a minimum depth of 5 feet from the base building line, and a maximum required depth of 15 feet.

RESPONSE: Please refer to the planting plan for the area 10' adjacent to the eastern and northern property line for the required buffers.

Architecture and Urban Design:

1. Provide renderings with next submittal. RESPONSE: Please find the attached rendering.

<u>Signage:</u>

1. For review, full signage package shall be provided. RESPONSE: No new signage proposed.

<u>Lighting:</u>

1. Provide note on site plan indicating maximum foot-candle level. RESPONSE: Please see the architectural site plan for Note 5 for the maximum foot candle level.

Green Building & Environmental Sustainability:

1. Indicate on the site plan where the infrastructure necessary for future installation of electric vehicle-charging equipment will be located. (See 151.154, Ordinance O-2016-02).

RESPONSE: Please see the architectural site plan for Note 4 indicating the electric vehicle charging equipment infrastructure.

 Work with Building Department to ensure compliance with Green Building Ordinance. Review and adjust drawings as necessary. Indicate on drawings Green Building certification to be achieved.
 RESPONSE: Please see the architectural site plan for Note 6 outlining the items included for the Green Building Ordinance.

Engineering:

Revision Procedure:

-Any revisions applied to the plans shall be numbered and bubbled/clouded. -In an 8.5"x11" revision summary, identify each revision by providing the plan sheet number, bubble/cloud number and a narrative describing each change or how a comment is being addressed.

- 1. Provide plat determination letter from the Broward County Planning Council. RESPONSE: Site has already been platted. A plat note amendment has been submitted to Engineering on 3/16.
- 2. On the floor plan sheets, the north arrow direction is incorrect. RESPONSE: The floor plan sheets have corrected the north arrow.
- 3. Sheet C-5.1, minimum parking stall depth is 19', not 18'. RESPONSE: Please see Sheet C-5.1 parking and handicap parking stall depth has been updated to 19'.
- 4. Indicate location of easements on the Site Plan and the Partial Site Plan. RESPONSE: Easements are called out on Civil plans, Architectural plans to update site plan with easement locations
- Update the TAC submittal date on the civil cover sheet.
 RESPONSE: TAC submittal date has been updated on the civil cover sheet.
 April 17,2023.
- 6. A lift gate is being proposed at the entrance to the parcel south of Sherman Street. Provide a vehicular queueing analysis and provide the queueing spaces required. All vehicular queueing shall be within provide property. RESPONSE: Please find the Traffic Analysis attached to include the queueing analysis and response to City comments.
- Please clearly should have ADA accessibility from the ADA parking stall to the building entrance. Identify any change in elevation or slopes. If there is no change in elevation, indicate on plans the transition is flush. Please add a note on the site plan stating any lip from 1/4" but not greater than ½" will be beveled to meet ADA requirements.
 RESPONSE: ADA accessibility from ADA parking stall to building entrance is present on civil plans sheet C-3, note has been added to "Notes" list as item #6.
- Show sight visibility triangle on plans as per Chapter 155.12 of the City Code. Be sure to show distance between property line and the edge of pavement on plan.
 RESPONSE: Visibility triangle is present on Civil plans sheet C-3, distance between property line and EOP on Sherman Street have been labeled, also present on sheet C-3.4 in cross sections "A-A" and "C-C".
- *9. FDOT cursory review, provide FDOT pre-application letter.* **RESPONSE: FDOT Pre-Application Letter has been provided.**
- Coordination with off-site improvements on North 31st Avenue / Sherman Street by the Yellow Green Farmers Market may be required.
 RESPONSE: Acknowledged. The Applicant will coordinate as necessary.
- 11. Provide traffic impact study for the site with the proposed expansion of addition storage units to the existing storage facility that is currently under operation. Please contact Rick Mitinger or Clarissa Ip at Engineering, Transportation & Mobility to

coordinate methodology review. Traffic study related reviews are done on a cost recovery basis by a City's consultant.

RESPONSE: Traffic study was submitted to City on 3/9/2023. A revised Traffic Analysis is attached addressing City comments issued.

Traffic Transportation Related Cost Recovery Fees Table					
a) Administrative Processing Fee:	5% of Initial				
Deposit					
 b) Initial Deposit and Minimum 					
Balance:					
		Minimum	Administrative		
Project Size	Initial Deposit	Account Balance	Fee		
Less than 10 Acres	\$5,000	\$1,000	\$250		
10 Acres to Less than 30 Acres	\$8,000	\$1,600	\$400		
30 Acres & Over	\$12,000	\$2,400	\$600		

CONSULTANT COST RECOVERY FEE TABLE

- **RESPONSE:** A deposit of \$2,600 has been paid to the City of Hollywood.
- *13. MOT plans will be required at the time of City Building Permit review.* **RESPONSE: Acknowledged.**
- 14. All outside agency permits must be obtained prior to issuance of City building permit. RESPONSE: Acknowledged. Broward County SWM license in permitting process.
- This project will be subject to the impact fees (inclusive of park impact fee) under the new City Ordinance PO-2022-17, effective September 21, 2022.
 RESPONSE: Acknowledged. Impact fees to be paid by owner.
- *16. More comments may follow upon review of the requested information.* **RESPONSE: Acknowledged.**

Landscaping:

12.

1. Provide official tree survey signed and sealed by surveyor not older than 6 months for existing trees on site on a separate table include: location, species, estimated ht./spread, and /DBH diameter of trunks in inches. For sites with existing trees/palms, superimpose tree survey over proposed site for Tree Disposition plan. Tree disposition to follow same numbering as survey.

RESPONSE: Please find attached the updated survey to include trees. The landscape plan includes the Tree Disposition Plan with numbering to match the survey.

2. Provide a Tree disposition plan and landscape plan on separate sheets by a registered professional licensed Landscape Architect in the State of Florida that compliments the

building architecture and uses, provides for shade, beautifies the site, accentuates site features, and serves as a buffer where appropriate. Provide tabular data chart on plan that identifies City of Hollywood landscape requirements and how they are being met for Perimeter landscape, Species diversity requirements, Interior landscape for at grade parking lots and vehicular use areas, open space, view triangle, overhead and underground utilities, Center line, monument line, lot dimensions, and adjacent street names and shall comply with all planning and development board and historic preservation board individual requirements when applicable. Landscape plan should comply with all the requirements according to City of Hollywood Landscape manual, chapter 155.52, Article 9 LDR. Landscape plan set to include and clarify what is been provided as per city code requirements for landscape for project type. Landscape plans submitted shall clearly define which trees have been provided as required in terms of amount of inches of DBH for trees proposed to be removed and trees required to be planted per landscape code per zoning district. All trees and palms provided should meet City of Hollywood minimum height and DBH requirements at planting. If any trees are to remain in close proximity to construction activities, it must be clearly shown on plans with tree protection barriers with standard CRZ protection of a minimum of one (1) foot of radius per inch of tree trunk diameter.

RESPONSE: Tree Disposition Plan provided. Refer to landscape plans sheets LA1-01 and LA1-02.

 Irrigation: Provide a note on the landscape plan indicating 100% irrigation coverage will be provided.
 RESPONSE: Irrigation Plans provided with 100% coverage note added on

plans. Refer to sheets IR1-01, IR1-02 and IR5-01.

4. According to Chapter 155.52 of the Code of Ordinances and the City of Hollywood Landscape Manual, Shade trees to be installed at a minimum size of 2" DBH/ 12' height. Existing trees meeting this criteria may be used as credit toward total requirement. Palm trees count toward tree requirements on a 3:1 basis, meaning 3 palms equal 1 broadleaf tree. The following palm species should be used for mitigation or code: Royal Palm, Phoenix sylvestris/Medjool/canariensis, Bismarkia, Foxtail and Coconut. Minimum height requirements for all palms at planting is 8' of CT.

Tree/Palm mitigation requirements: Trees are mitigated on an inch per inch basis, trees to be 12' ht with 2" dbh min. Palms are mitigated on a 1:1 ratio with a palm from the following list, palms to be 8' CT minimum (Royal Palm, Phoenix sylvestris/Medjool/canariensis, Bismarkia, Foxtail and Coconut).

RESPONSE: Site tree and tree mitigation requirements met. Refer to plant list on sheet LA2-03.

Utilities:

 Alta Survey - Revise Surveyor's note #6 - Flood Zone is X only. Not AE(7). Also add note: Elevations, if shown, shall reference NAVD88.
 RESPONSE: On Civil plans sheet C-3 "Notes 2 and 10" item #5 elevations shown reference NAVD 88.

- This site resides currently within FEMA Flood Zone X. The proposed FFE = 6.95' NAVD88 to be floodproofed to 7.5' NAVD88. This is acceptable upon approval from Broward County Surface Water Management License reviewer.
 RESPONSE: Noted. Approval with BC SWM is in process.
- The 8" DIP WM connecting to the existing 8"DIP WM within the property requires a DDCV since the line is service an existing fire hydrant.
 RESPONSE: Proposed 8" DIP WM relocation and removal will no longer be proposed. Existing 8" DIP WM and DDCV will remain.
- 4. Additional perimeter cross sections across west and north property limits through driveway and retention area including transition areas meeting adjacent property grades.

RESPONSE: Grades will not be affected along the west property line, please see additional cross section "C-C" along the north property line on sheet . Grades through the driveway will remain at existing elevations, no cross section to be provided.

- Sheet C-3.4 Identify fence on Cross Section A-A.
 RESPONSE: Fence, EOP, and CL have been identified on Cross Section A-A.
- 6. Ensure all stormwater is retained onsite. RESPONSE: Noted. Stormwater to be retained onsite.
- 7. Provide preliminary drainage calculations. RESPONSE: Preliminary drainage calculations are included.
- 8. Permit approval from outside agencies will be required. RESPONSE: BC SWM permit approval is in process.
- Landscape plans to be submitted shall coordinate with civil plans to accommodate drainage features.
 RESPONSE: Acknowledged. Please find landscape plans included.
- 10. NPDES Over 1 acre RESPONSE: Acknowledged.
- 11. The construction activity on this site is regulated and required to obtain the NPDES Construction Generic Permit (CGP) from DEP. Failure to obtain permit coverage and/or maintain job site erosion and sedimentation control in accordance with permit conditions and applicable regulations may result in fines up to \$27,500.00 per day. **RESPONSE: Acknowledged.**
- 12. Prior to issuance of building permit a Stormwater Pollution Prevention Plan (SWPPP) shall be required and CGP Notice of Intent (NOI) must be submitted to DEP. SWPPP must be maintained at the job site at all times until the project is terminated and Notice of Termination (NOT) filed with DEP. The SWPPP shall contain detailed

descriptions of structures, procedures, contact names and/or control measures designed to reduce sediment and stormwater runoff. **RESPONSE: Acknowledged.**

13. Construction sites and operations shall be required to maintain during and after all construction, development, excavation, dewatering, and/or alteration operations, structural and non-structural Best Management Practices (BMP's) with the intent to reduce pollutants and sediment in stormwater runoff. **RESPONSE: Acknowledged.**

14. For additional information regarding NPDES regulations please contact: Florida Department of Environmental Protection 2600 Blair Stone Road, MS #2500 Tallahassee, FL 32399-2400 (850) 245-7522 Visit DEP's Web site at: <u>www.dep.state.fl.us/water/stormwater/npdes</u> **RESPONSE: Acknowledged.**

Fire:

- Provide a note on civil drawing all underground fire main work must be completed by fire protection contractor holding a Class I, II, or V license per FS 633.102.
 RESPONSE: Please see sheet C-4, "Notes" item #8 for location of note.
- 2. The job address shall be clarified and corrected on all documents within this submission as the TAC application states the job address as 3090 Sherman Street, but the architectural pages show 3090 Sheridan Street in the title blocks. --- The civil pages show 3090 Sherman Street in the title blocks. --- The folio number given on the TAC application (514208150010) shows as 3090 Sheridan Street in BCPA. RESPONSE: The documents and plans have been corrected to reflect 3090 Sherman Street with Folio Number 514208160010.
- 3. At time of submittal, water supply must meet NFPA 1 (2018 Ed.) Section 18.4.5.3. ---In order to determine the minimum fire flow for firefighting purposes, a hydrant flow test will need to be scheduled through our underground utilities dept., 954-921- 3046. --- After the results are completed, the civil engineer shall show on civil drawings the calculations using table 18.4.5.2.1 showing that the project meets the minimum fire flow requirements for the building.

RESPONSE: Fire flow test has been completed by the City of Hollywood in April of 2022, those results and fire flow building requirements can be seen on Sheet C-4.2

 Water supply and any new hydrants shall be in place prior to accumulation of combustible materials per NFPA 1 (2018 Ed.) Section 16.4.3.1.1.
 RESPONSE: Please see sheet C-4, "Notes" item #9 for location of note.

- Provide a note on civil drawing all underground fire main work must be completed by fire protection contractor holding a Class I, II, or V license per FS 633.102.
 RESPONSE: Please see sheet C-4, "Notes" item #8 for location of required note.
- 6. The proposed FDC and new fire hydrant location for Building U is on the east side of the structure which itself is acceptable, but the complete FD Access pathway is not depicted on the plans. --- An aerial view from Google Maps shows this road ending at the entrance of a parking lot as one goes south on Sherman Road. --- Provide a complete FD Access route which is compliant with NFPA 1 (2018 Ed.) Chapter 18 in its entirety.

RESPONSE: FDC and new fire hydrant for building U have been relocated to the Southeast corner of Building "U" on Sheet C-4. Fire Truck Analysis "Exhibit 1" has been added to the end of the submittal package.

7. Be advised that NFPA 1 (2018 edition) Section 11.10.1 requires that minimum radio signal strength for fire department communications shall be maintained at a level determined by the AHJ for all new and existing buildings. --- If at any time (including the construction phase), Fire Department personnel determine that the minimum radio signal strength is not being met, a Two-Way Radio Communication Enhancement system may be required to be installed. **PEEDONSE:** Advantaged

RESPONSE: Acknowledged.

Please do not hesitate to contact me at 954-527-2485 or <u>julian.bobilev@gmlaw.com</u> with any questions regarding the project.

Respectfully submitted, Greenspoon Marder

JulianBebeles

Julian Bobilev, AICP Enclosures cc: Stanley Bonilla, Safeguard Properties, LLC Mike Adams, Mike Carter Construction, Inc. Melissa Ross, Ross Engineering

SURVEYOR'S NOTES:

- 1. Not valid without the signature and original raised seal of a Florida licensed Surveyor and Mapper.
- 2. Elevations shown hereon are based on the NAVD88
- 3. Benchmark reference: BCBM 1800 Elevation 7.034 NGVD29 (5.433 NAVD88).
- 4. Set IR w/cap (LB# 6727) at property corners unless otherwise noted
- 5. There are no trees on this property other than shown hereon
- 6. Expected use of property is Commercial. The minimum relative distance accuracy for this type of Boundary Survey is 1 ft. in 10,000 ft. The accuracy obtained by measurement & calculations was found to
- exceed this requirement. 7. Unless otherwise noted, this firm has not attempted to locate underground utilities, footings and/or foundations.
- 8. This survey was prepared with the benefit o First American Title Insurance Company Commitment for Title Insurance, FATIC File Number: 1062-6313898, Customer File Number: FLTSS-514994a, Through Date:
- January 17, 2023 at 8:00 AM. 9. Bearings shown hereon are based on the West line of Parcel 'A' of 'TAFT STREET INDUSTRIAL PARK" according to the Plat thereof as
- recorded in Plat Book 122, Page 25, of the Public Records of Broward County, Florida having a bearing of South 01°08'48"East. 10. FLOOD ZONE INFORMATION
- Community Name: City of Hollywood Community Number: 125113 County Name: Broward
- State: Florida
- Map & Panel Number: 12011C0566 & 12011C0568
- Suffix: H F.I.R.M. Index Date: 08-18-2014
- F.I.R.M. Panel Effective Date: 08-18-2014
- Flood Zones: AH(7) & X
- 11. Property Address: 3090 Sheridan Street, Hollywood, Florida, 33021 12. Also, this certifies that there are 95 regular parking spaces on said
- property, and 7 handicapped spaces. 13. There is no observed evidence of: current earth moving work, building
- construction or building additions. 14. Property has a Zoning Classification of IM-1 Low Intensity Industrial and Manufacturing District as per the City of Hollywood's Zoning and
- Land Use Map, dated April 11, 2011 (latest update available). Setback and Height Requirements copied verbatim from the City of Hollywood's Land Development code
- Front or street side Pursuant to the performance standards of the
- industrial street landscape buffers (§ <u>4.4</u>.E).
- Side interior and Rear 0 feet.
- Whenever the IM-1 District abuts a residential district, 20 ft setback +1 additional ft per 1 ft increase over 15 ft of height. A 5 ft. wide approved landscaped buffer must be included and maintained pursuant to the industrial landscape buffers (§ 4.4.E).
- Maximum Building Height 35 feet.
- 16. Access to the subject property is provided by Sheridan Street a publicly dedicated street and by O.R.B. 3357, Pg. 82, Public Records of Broward County, Florida, right-of-way deeded to City of Hollywood for street purposes.

PREPARED BY: DOUGLASS, LEAVY & ASSOCIATES INC.

> PROFESSIONAL SURVEYORS & MAPPERS 7914 WILES ROAD CORAL SPRINGS, FLORIDA 33067 OFFICE: (954) 344-7994 FAX: (954) 344-2636 LICENSED BUSINESS No. 6727

PROJECT:

SAFEGUARD SELF STORAGE 3090 SHERIDAN STREET, HOLLYWOOD, FL **ALTA SURVEY**

LEGAL DESCRIPTION:

PARCEL 1 (Fee Estate):

The North 985.83 feet of Parcel "A", TAFT STREET INDUSTRIAL PARK, according to the Plat thereof, as recorded in Plat Book 122, Page 25, of the Public Records of Broward County, Florida.

PARCEL 2 (Fee Estate):

Parcel "A" of SHERIDAN INDUSTRIAL PARK SOUTH, according to the Plat thereof, as recorded in Plat Book 114, Page 18, of the Public Records of Broward County, Florida.

PARCEL 3 (Easement Estate):

Non-exclusive easement for ingress and egress for the benefit of Parcel 1, set forth in that Special Warranty Deed from Rinker Materials Corporation to Sheridan Extra Closet, Ltd., dated March 29, 1996, recorded April 8, 1996 in Official Records Book 24717, Page 372 over and across the following described land:

A portion of Tract "A", CENTRAL GOLF SECTION OF HOLLYWOOD, according to the Plat thereof, as recorded in Plat Book 9, Page 44, of the Public Records of Broward County, Florida, and being more particularly described as follows:

Beginning at the Northerly most Northeast corner of TAFT STREET INDUSTRIAL PARK, according to the Plat thereof, as recorded in Plat Book 122, Page 25, of the Public Records of Broward County, Florida; thence North 01°08'48" West, radial to the next described curve concave to the Southwest, a distance of 40.00 feet to the Southeast corner of SHERIDAN INDUSTRIAL PARK SOUTH, according to the Plat thereof, as recorded in Plat Book 144, Page 18, of the Public Records of Broward County, Florida; thence Southerly along the arc of said curve having a radius of 45.00 feet, a delta of 90°00'00" and an arc distance of 70.69 feet to the Point of Tangency; thence South 01°08'48" East, a distance of 157.87 feet; thence South 88°54'12" West, a distance of 45.00 feet to the intersection with the East line of said TAFT STREET INDUSTRIAL PARK; thence North 01°08'48" West, along said East line, a distance of 162.83 feet to the POINT OF BEGINNING.

Said lands lying in the City of Hollywood, Broward County, Florida and containing net total of 329,896 square feet (7.574 acres) more or less.

3090 SHERIDAN STREET SHERIDAN EXTRA STORAGE 3090 SHERIDAN STREET, HOLLYWOOD, FL. 33021 ALTA SURVEY

REVISIONS: Date , Description 04/07/22 UPDATE SURVEY 01/05/23 UPDATE SURVEY 01/31/23 UPDATE SURVEY 03/15/23 UPDATE SURVEY

FIRT AMERICANL TITLE INSURANCE COMPANY TLTLE SEARCH REPORT

CUSTOMER NUMBER: FLTSS—51494a FATIC FILE NUMBER 1062—6313898

THROUGH DATE: JANUARY 17, 2023 AT 8:00 AM

1. DECLARATION OF RESTRICTIVE CONENANT ORB 16545 PAGE 138 BCR. (BLANKET IN NATURE PARCEL 2)

- 2. GRANT OF EASEMENT ORB 25417 PAGE 237 BCR. (AS SHOWN)
- 3. GRANT OF EASEMENT ORB 25417 PAGE 242 BCR. (AS SHOWN)
- 4. EASEMENT AGREEMENT ORB 49769 PAGE 292 BCR. (AS SHOWN)
- 5. PARCEL A TAFT STREET INDUSTRIAL PARK PLAT BOOK 122 PAGE 25 BCR. (AS SHOWN)
- 6. PARCEL A SHERIDAN INDUSTRIAL PARK SOUTH PLAT BOOK 114 PAGE 18 BCR. (AS SHOWN)

CERTIFY TO: FIRST AMERICAN TITLE INSURANCE COMPANY, FREEDOM LAND TITLE AGENCY LIMITED, LIABILITY COMPANY

PPF SS 3090 SHERIDAN STREET, LLC

CERTIFICATE:

THIS IS TO CERTIFY THAT THIS MAP OR PLAT AND THE SURVEY ON WHICH IT IS BASED WERE MADE IN ACCORDANCE WITH THE 2021 MINIMUM STANDARD DETAIL REQUIREMENTS FOR ALTA/NSPS LAND TITLE SURVEYS, JOINTLY ESTABLISHED AND ADOPTED BY ALTA AND NSPS STANDARDS. THE FIELD WORK WAS COMPLETED ON JANUARY 05, 2023.

DRAWING DATA: Drawing date: 01/12/2022 fb/pg source: FIELDBOOK WHP Drafter: SJD Checked: CADD dwg no: 22001ALTA 2023 SHEET: 1/4

SEAL:

For the Firm___

Scott J. Douglass Professional Šurveyor & Mapper Florida Registration No 4532

LEGEND:	
B/W	BACK OF WALK
CONC	CONCRETE
CATV	CABLE TELEVISION
C.L.F.	CHAIN LINK FENCE
D.B.	DEED BOOK
ELEV	ELEVATION
EP	EDGE OF PAVEMENT
FH	FIRE HYDRANT
F/L	FLOWLINE
F/0	FIBER OPTIC
FP&L	FLORIDA POWER & LIGHT
H.H.	HANDHOLE
LB	LICENSED BUSINESS
MON	MONUMENT
0.R.B.	OFFICIAL RECORDS BOOK
OHW	OVERHEAD WIRES
P.R.C.R.	PALM BEACH COUNTY RECORDS
P.B.	PLAT BOOK
PG.	PAGE
RES	RESIDENI
	REINFURGE CUNCRETE PIPE
K/W	
5.K.	STATE RUAD
	TOP OF CURB
T/S	TRAFFIC SIGNAL
(Тур.)	TYPICAL
 -оң w —	ELECTRIC OVERHEAD WIRES
(P)	PLAT RECORDS

		TRFF (`HART		
LETTER		DIAMETER	TYPE	CANDPY	HIGHT
1	2.8′	0.91	SABLE PALM	4'	12'
2	2.8'	0.9'	SARLE PALM	<u>ــــــــــــــــــــــــــــــــــــ</u>	12'
3	3.2'	1.01	SARLE PALM	<u> </u>	201
	 	1.0	SADLE DALM	6	20/
		1.0	SADLE FALM	6	20/
5	3.2	1.0	SABLE PALM	6	
<u>Б</u>	3,21	1.0	SABLE PALM	P.	20
/	2,7	0'9'	DEAD IREE		
8	3.7′	1.2′	BUTTONWOOD	8′	10'
9	3.2′	1.0′	SILVER BUTTONWOOD	8′	12'
10	3.65′	1.2′	YELLOW TRUMPET	8′	12′
11			DEAD TREE		
12	5.0′	1.6′	SABLE PALM	6′	12′
13	10.0′	3.21	STRANGLER FIG	8′	30′
14			REMOVED TREE		
15	1.9′	0.6′	DAHOON HOLLY	8′	15′
16	5.5'	1.8′	SABLE PALM	6′	15′
17	12.0'	3.8′	STRANGI FR FIG	1.51	351
18	26'	0.8/	Ι Ι/Ε ΠΔΚ	<u> </u>	15/
19	4.31	1.4/	CARRAGE PALM	51	10'
20	4.5	1.4	CADDAGE DALM		10/
20	4,5	1.4	CABBAGE PALM		10
21	3,3	1,1	CABBAGE PALM	<u> </u>	6
22	15.0'	4,8′	STRANGLER FIG	20'	30'
23	2.6'	0,8′	LIVE UAK	6′	15'
24	1.6′	0.5′	DAHOON HOLLY	8′	15'
25	5.3′	1.7′	STRANGLER FIG	15′	25′
26	3.7′	1.2′	CABBAGE PALM	3′	5′
27	10.0′	3.2′	STRANGLER FIG	8′	12′
28	1.6′	0.51	DAHOON HOLLY	6′	10'
29	4.5′	1.4′	CABBAGE PALM	8′	12′
30	9.67' X 2.5'		STRANGLER FIG	15′	30′
31	3,8′	1,2′	CABBAGE PALM	8′	20′
32	4.4′	1.4′	STRANGLER FIG	10′	25′
33	2.6′	0.8′	I IVE DAK	6′	15′
34	1.3′	0,4′	SILVER BUTTONWOOD	5′	10'
35	0.9′	0.3′		4′	12'
26	4.27	1.0/		15/	20/
	+,⊆ ○ 7/	1.0	CADDACE DALM		
	3,/	1.0	DEAD TOES	Ø	
39	2.5′	0.8′	YELLOW		1.5'
40	5.3'	1.7'	CABBAGE PALM	6'	10'
41			DEAD TREE		
42	1.5′	0.5′	SILVER BUTTONWOOD	6′	12′
42		<u>Λ</u>		21	121
	1.01	1 51			25/
	75/			10/	
40	/.J			10/	
40				<u>اد</u>	40
4/	3,3	1.1.	PALM	<u> </u>	
48	2.7	0.9.	PALM	4'	15'
49	2.8′	0.9'	PALM	4'	15'
50	2.7′	0.9'	PALM	5′	20'
51	3.1′	1.0′	PALM	4′	12'
52	2,8′	0.9′	PALM	4′	12'
53	2.5′	0.8′	PALM	4′	15′

/	1.0′	LIVE DAK	10′	45′
/	1.3′	LIVE DAK	15′	45′
/	1.6′	LIVE DAK	20′	40′
/	1.3′	LIVE DAK	15′	35′
/	1.4′	LIVE DAK	20′	40′
/	1.4′	BLACK OLIVE	45′	20′
/	1.1′	PALM	5′	25′
/	1.5′	LIVE DAK	15′	45′
/	1.5′	LIVE DAK	15′	45′
/	2.5′	LIVE DAK	35′	40′
/	2.5′	LIVE DAK	20′	40′
/	2.4′	LIVE DAK	10′	35′
	PF	REPARED FOR:		

TREE CHART					
ETTER	CIRCUMFERENCE	DIAMETER	TYPE	CANDPY	HIGHT
54	4.4′	1.4′	CABBAGE PALM	6'	15'
55	1.91	0.6'	STRANGI FR FIG	3'	15/
56	24'	0.8/	SARLE PALM	<u>5</u> ′	25'
57	3.31	1.0/		<u> </u>	251
58	3.0/	1.01		<u> </u>	251
59	3.1/	1.0			251
<u> </u>	2.7/	1.0		15/	25/
<u> </u>	3.7	1.0/		IJ	35
61	3.0	1.0			
	3.0	1.0		15	30
63	4,6	1.5	LIVE DAK	15	30
64	IU,6'	3,4	LIVE DAK	20.	45'
65	1,5	1,6,	LIVE DAK	12'	357
66		2.0'	LIVE DAK	12'	35'
6/	5.7	1,8'	LIVE UAK	15'	55'
68	/,0/	2.2'	LIVE UAK	12'	45'
69	8.0'	2.51	LIVE UAK	20'	45'
70	4.0'	1.3′	LIVE DAK	10'	50'
71	4.0′	1.3′	LIVE DAK	10'	50'
72	3.1′	1.0′	PALM	5′	20'
73	7,2′	2.3′	LIVE DAK	20′	40′
74	5.0′	1,8′	LIVE DAK	25′	35′
75	3.7′	1.2′	LIVE DAK	20′	25′
76	4.7′	1.5′	PALM	5′	20′
77			DEAD TREE		
78	4.1′	1.3′	DAHOON HOLLY	6′	15′
79	3.8′	1.2′	LIVE DAK	15′	30′
80	3.4′	1.1′	LIVE DAK	10′	20′
81	8,3′	2,6′	LIVE DAK	25′	40′
82	13.1′	4,2′	LIVE DAK	35′	50′
83	9,2′	2,9′	LIVE DAK	15′	45′
84	8,2′	2.6′	LIVE DAK	25′	45′
85	5,8′	1.8′	LIVE DAK	35′	45′
86	161	151	GREEN	201	251
00	0.7	1.0	BUTTONWOOD	20	
87	6,8′	2,2′	LIVE DAK	20′	45′
88	9.8′	2.5′	LIVE DAK	25′	40′
89	7.5′ (X2)	2,4′	LIVE DAK	25′	45′
90	8.0′	2,5′	LIVE DAK	45′	15′
91	4,2′	1.3′	LIVE DAK	20′	45′
92	7.9′	2.5′	LIVE DAK	25′	45′
93	3,9′	1.3′	BLACK OLIVE	35′	15′
94	5.0′	1.6′	SLASH PINE	20′	65′
95	5.7′	1.8′	LIVE DAK	30′	45′
96	6.3′	2.0′	LIVE DAK	35′	40′
97	4.2′	1.3′	LIVE DAK	35′	45′
98	4.0′	1.3′	LIVE DAK	15′	50′
99	11.2′	3,6′	LIVE DAK	60′	50′
100	4,0′	1,3′	SLASH PINE	4′	40′
101	3.0′	1.0′	LIVE DAK	10′	45′
102	3,9′	1.3′	LIVE DAK	15′	45′
103	5.0′	1.6′	LIVE DAK	20′	40′
104	4.1′	1.3′	LIVE DAK	15′	35′
105	4,4′	1.4′	LIVE DAK	20′	40′
106	4.4′	1.4′	BLACK OLIVE	45′	20′
107	3,5′	1.1′	PALM	5′	25′
108	4.7′	1.5′	LIVE DAK	15′	45′
109	4.7′	1.5′	LIVE DAK	15′	45′
110	7,9′	2.5′	LIVE DAK	35′	40′
111	7,8′	2.5′	LIVE DAK	20′	40′
112	7.5′	2.4′	LIVE DAK	10′	35′

	SYMBOL LEGEND				
-0	MISCELLANEOUS SIGN	Ŷ	WOOD POWER POLE		
Χ	WATER VALVE	å	CONCRETE LIGHT POLE		
Ķ	FIRE HYDRANT	\diamond	CONCRETE POWER POLE		
0	CLEAN-OUT	Ø	Ground Light Post w/ Water&Elect for Campers		
Ŷ	ANCHOR	\boxtimes	IRRIGATION VALVE		
	CURB INLET	4	GROUND LIGHT		
D	STORM MANHOLE	Ø	CABLE TV RISER		
	CATCH BASIN	0	YARD DRAIN		
F	ELECTRIC HANDHOLE	ELEC	ELECTRIC METER		
¢	METAL LIGHT POLE	۵	BELL SOUTH MANHOLE		
ф	CONCRETE LIGHT POLE	0	WELL CKECK VALVE		

	SYMBOL LEGEND				
	MISCELLANEOUS SIGN	Ŷ	WOOD POWER POLE		
Χ	WATER VALVE	å	CONCRETE LIGHT POLE		
Å	FIRE HYDRANT	\diamond	CONCRETE POWER POLE		
0	CLEAN-OUT	Ø	Ground Light Post w/ Water&Elect for Campers		
Ŷ	ANCHOR	\boxtimes	IRRIGATION VALVE		
	CURB INLET	4	GROUND LIGHT		
D	STORM MANHOLE	Ø	CABLE TV RISER		
	CATCH BASIN	0	YARD DRAIN		
Ţ	ELECTRIC HANDHOLE	ELEC	ELECTRIC METER		
\$	METAL LIGHT POLE	۵	BELL SOUTH MANHOLE		
\checkmark	CONCRETE LIGHT POLE		WELL CKECK VALVE		

CONC				MISCELLA
				WATER V
CLF	CADLE TELEVIS		24	
D.B.	DEED BOOK		×~	
ELEV	ELEVATION			CLEAN-0
EP	EDGE OF PAVE	EMENT	1	ANCHOR
FH	FIRE HYDRANT			CURB IN
F/L	FLOWLINE		0	STORM I
F/O	FIBER OPTIC			
FP&L	FLORIDA POWE	R & LIGHT		CAICH E
H.H.	HANDHOLE		IJ	ELECTRIC
LB	LICENSED BUS	INESS	\$	METAL L
MON	MONUMENT			CONCRE
P.B. PG. RES RCP R/W S.R. T/C T/S (Typ.) —OHW — (P)	PLAT BOOK PAGE RESIDENT REINFORCE CC RIGHT-OF-WAY STATE ROAD TOP OF CURB TRAFFIC SIGNA TYPICAL — ELECTRIC OVEF PLAT RECORDS	NCRETE PIPE		
TTFR		TREE C	CHART Type	
		DIAMETER		
1		0,9	SADLE FR	
2	2,8'	0,9,	SABLE PA	
3	3,2′	1.0'	SABLE PA	ALM
4	3,2′	1.0'	SABLE PA	ALM
5	3,2′	1.0′	SABLE PA	ALM
6	3.2′	1.0′	SABLE PA	ALM
7	2.7′	0,9′	DEAD TR	EE
8	3.7′	1.2′	SILVER BUTTONWI	א מסכ
9	3.2′	1.0′	SILVER BUTTONWI	א מסכ
10	3,65′	1.2′	YELLOV TRUMPE	V T
11			DEAD TR	EE 📗
12	5.0′	1.6′	SABLE PA	ALM
13	10.0′	3.2′	STRANGLER	FIG
14			REMOVED -	TREE
15	1.9′	0,6′	DAHOON HE	
16	551	1.8′	SABLE PA	
17	12.0/	3.9/		
10		0.0/		
10		U,8	LIVE UA	
17	4,3'	1,4'	LARRAGE F	ALM
20	4.5′	1.4′	CABBAGE F	ALM
21	3.3′	1.1′	CABBAGE F	PALM
22	15.0′	4,8′	STRANGLER	FIG
23	2.6′	0.8′	LIVE DA	γκ
24	1.6′	0.5′	DAHOON HE	JLLY
25	5,3′	1.7′	STRANGLER	FIG
26	3.7′	1.21	CABBAGE F	PALM
27	10.0'	3.21	STRANGI FR	FIG
— ·	2010	<u> </u>		

LEGEND:

BACK OF WALK

B/W

15	1.9′	0.61	DAHOON HOLLY	
16	5.5′	1.8′	SABLE PALM	
17	12.0′	3.8′	STRANGLER FIG	
18	2,6′	0.8′	LIVE DAK	
19	4.3′	1.4′	CABBAGE PALM	
20	4,5′	1.4′	CABBAGE PALM	
21	3,3′	1.1′	CABBAGE PALM	
22	15.0′	4,8′	STRANGLER FIG	
23	2.6′	0.8′	LIVE DAK	
24	1.6′	0.51	DAHOON HOLLY	
25	5.3′	1.7′	STRANGLER FIG	
26	3.7′	1.2′	CABBAGE PALM	
27	10.0′	3,2′	STRANGLER FIG	
28	1.6′	0.51	DAHOON HOLLY	
29	4.5′	1.4′	CABBAGE PALM	
30	9.67' X 2.5'		STRANGLER FIG	
31	3,8′	1,2′	CABBAGE PALM	
32	4,4′	1.4′	STRANGLER FIG	
33	2,6′	0,8′	LIVE DAK	
34	1.3′	0.4′	SILVER BUTTONWOOD	
35	0.9′	0.3′	SILVER BUTTONWOOD	
36	4,2′	1.3′	STRANGLER FIG	_
37	3.7′	1.2′	CABBAGE PALM	
38			DEAD TREE	
39	2.5′	0,8′	YELLOW TRUMPET	
40	5.3′	1.7′	CABBAGE PALM	
41			DEAD TREE	
42	1.5′	0.5′	SILVER BUTTONWOOD	
43	0.91	0.3′	DAHOON HOLLY	
44	4,8′	1.5′	LIVE DAK	
45	7.5′	2,4′	LIVE DAK	
46	6,8′	2,2′	LIVE DAK	
47	3.3′	1.1′	PALM	
48	2,9′	0.9′	PALM	
49	2,8′	0.9′	PALM	
50	2.7′	0.9′	PALM	
51	3.1′	1.0′	PALM	
52	2,8′	0.9′	PALM	
53	2.5′	0.8′	PALM	

PREPARED FOR:	
MIKE CARTER CONSTRUCTION	INC
435 12TH STREET WEST BRADENTON, FL. 34205	

6' 8'	12′	68	7.01	221		10/	
8′			710			12	45'
0	30′	69	8.0′	2.5′	LIVE DAK	20′	45′
		70	4.0'	1.3′	LIVE DAK	10′	50′
8′	15′	71	4.0′	1.3′	LIVE DAK	10′	50′
6′	15′	72	3.1′	1.0′	PALM	5′	20′
15′	35′	73	7,2′	2.3′	LIVE DAK	20′	40′
6′	15′	74	5.0′	1,8′	LIVE DAK	25′	35′
5′	10′	75	3.7′	1.2′	LIVE DAK	20′	25′
5′	10'	76	4.7′	1.5′	PALM	5′	20′
5′	6'	77			DEAD TREE		
20′	30′	78	4.1′	1.3′	DAHOON HOLLY	6′	15′
6′	15′	79	3,8′	1,2′	LIVE DAK	15′	30′
8′	15′	80	3,4′	1.1'	LIVE DAK	10'	20'
15′	25′	81	8.3'	2.6'	LIVE DAK	25′	40'
3′	5'	82	13.1′	4.2'	LIVE DAK	35′	50'
8′	12'	83	9,21	2.9'		15′	45′
6'	10'	84	8.21	2.6'		25′	45'
8′	12'	85	5.8'	1.8'		35'	45'
15′	30'		0.0	110	GREEN		10
8'	20'	86	4.6'	1.5′	BUTTONWOOD	20′	25′
10′	25′	87	6,8′	2,2′	LIVE DAK	20′	45′
6′	15′	88	9.81	2.5′	LIVE DAK	25′	40′
E /	10/	89	7.5′ (X2)	2.4′	LIVE DAK	25′	45′
Э.	10.	90	8.0′	2.5′	LIVE DAK	45′	15′
A./	10/	91	4,2′	1.3′	LIVE DAK	20′	45′
4.	12	92	7,9′	2.5′	LIVE DAK	25′	45′
15′	20'	93	3.9′	1.3′	BLACK DLIVE	35′	15′
8′	20′	94	5.0′	1.6′	SLASH PINE	20′	65′
		95	5.7′	1.8′	LIVE DAK	30′	45′
		96	6.3′	2.0′	LIVE DAK	35′	40′
Э.	12.	97	4.2′	1.3′	LIVE DAK	35′	45′
6′	10′	98	4.0'	1.3′	LIVE DAK	15′	50′
		99	11.2′	3.6′	LIVE DAK	60′	50′
<i>C</i>	10/	100	4.0'	1.3′	SLASH PINE	4′	40′
Б.		101	3.0′	1.0′	LIVE DAK	10′	45′
3′	12′	102	3,9′	1,3′	LIVE DAK	15′	45′
6′	35′	103	5.0′	1.6′	LIVE DAK	20′	40′
10′	35′	104	4.1′	1.3′	LIVE DAK	15′	35′
12′	40′	105	4.4′	1,4′	LIVE DAK	20′	40′
5′	20'	106	4.4′	1.4′	BLACK DLIVE	45′	20′
4′	15′	107	3.5′	1.1′	PALM	5′	25′
4′	15′	108	4.7′	1,5′	LIVE DAK	15′	45′
5′	20'	109	4.7′	1.5′	LIVE DAK	15′	45′
4′	12′	110	7.9′	2.5′	LIVE DAK	35′	40′
4′	12′	111	7.8′	2.5′	LIVE DAK	20′	40′
	15/	112	7.51	2.4'	I IVE DAK	10′	35′

⋈ WATER VALVE ○─□ CONCRETE LIGHT POLE Image: Second Light Port of the poly FIRE HYDRANT ->> CONCRETE POWER POLE Image: Second Light Post w/ Image: Second Light Post w/ Ground Light Post w/ Image: Second Light Post w/ Image: Second Light Post w/ Image: Second Light Post w/ Image: Second Light Post w/ Image: Second Light Post w/ Image: Second Light Post w/ Image: Second Light Post W/ Mater & Second Light Post w/ Image: Second Light Post w/ Image: Second Light Post Image: S	⋈ WATER VALVE ○── CONCRETE LIGHT POLE ⋈ FIRE HYDRANT -◇ CONCRETE POWER POLE (□) CLEAN-OUT □ Ground Light Post w/ Water&Elect for Campers ↑ ANCHOR ☑ IRRIGATION VALVE (□) CURB INLET < GROUND LIGHT (□) STORM MANHOLE I GROUND LIGHT (□) STORM MANHOLE I CABLE TV RISER (□) ELECTRIC HANDHOLE I ELECTRIC METER ☆ METAL LIGHT POLE I BELL SOUTH MANHOLE ☆ CONCRETE LIGHT POLE I WELL CKECK VALVE		MISCELLANEOUS SIGN	-0-	WOOD POWER POLE
Image: Second Light Post w/ Image: Second Light Post w/ <td>Image: Second Light Pole Image: Second Light Pole Image: Second Light Pole</td> <td>Χ</td> <td>WATER VALVE</td> <td>∩−ם</td> <td>CONCRETE LIGHT POLE</td>	Image: Second Light Pole Image: Second Light Pole Image: Second Light Pole	Χ	WATER VALVE	∩− ם	CONCRETE LIGHT POLE
CLEAN-OUT Ground Light Post w/ Water&Elect for Compers ANCHOR ANCHOR CURB INLET CURB INLET CATCH BASIN CATCH BASIN ELECTRIC HANDHOLE ELECTRIC HANDHOLE ELECTRIC MANHOLE CONCRETE LIGHT POLE BELL SOUTH MANHOLE X CONCRETE LIGHT POLE Weill CKECK VALVE	Image: CLEAN-OUT Image: Cround Light Post w/ Water&Elect for Compers Image: CLEAN-OUT Image: Cround Light Post w/ Water&Elect for Compers Image: ANCHOR Image: Cround Light Post w/ Water&Elect for Compers Image: CLEAN-OUT Image: Cround Light Post w/ Water&Elect for Compers Image: CLEAN-OUR Image: Clean Post w/ Water&Elect for Compers Image: CLEAN-OUR Image: CROUND LIGHT Image: CLEAN-OUR Image: CLEAN-OUR Image: CLEAN-OUR <td>Ъ°</td> <td>FIRE HYDRANT</td> <td>\diamond</td> <td>CONCRETE POWER POLE</td>	Ъ°	FIRE HYDRANT	\diamond	CONCRETE POWER POLE
↑ ANCHOR ☑ IRRIGATION VALVE ■ CURB INLET ✓ GROUND LIGHT ● STORM MANHOLE Image: CABLE TV RISER ■ CATCH BASIN ● YARD DRAIN □ ELECTRIC HANDHOLE ELECTRIC METER ☆ METAL LIGHT POLE Image: Output Detection of the state	Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system <		CLEAN-OUT	Ø	Ground Light Post w/ Water&Elect for Campers
Image: CURB INLET Image: CROUND LIGHT Image: Output Storm Manhole Image: CABLE TV RISER Image: CATCH BASIN Image: Output Storm Manhole Image: CAT	Image: CURB INLETImage: CURB INLETImage: CROUND LIGHTImage: OSTORM MANHOLEImage: CABLE TV RISERImage: CATCH BASINImage: CABLE TV RISERImage: CABLE TV RISER </td <td>ſ</td> <td>ANCHOR</td> <td>\boxtimes</td> <td>IRRIGATION VALVE</td>	ſ	ANCHOR	\boxtimes	IRRIGATION VALVE
● STORM MANHOLE ■ CABLE TV RISER ■ CATCH BASIN ● YARD DRAIN □ ELECTRIC HANDHOLE ELECTRIC METER ☆ METAL LIGHT POLE ● BELL SOUTH MANHOLE ☆ CONCRETE LIGHT POLE ● WELL CKECK VALVE	● STORM MANHOLE ● CABLE TV RISER ■ CATCH BASIN ● YARD DRAIN □ ELECTRIC HANDHOLE ■ ELECTRIC METER ☆ METAL LIGHT POLE ● BELL SOUTH MANHOLE ☆ CONCRETE LIGHT POLE ● WELL CKECK VALVE		CURB INLET	4	GROUND LIGHT
■ CATCH BASIN ● YARD DRAIN □ ELECTRIC HANDHOLE ELEC ELECTRIC METER ☆ METAL LIGHT POLE ● BELL SOUTH MANHOLE ☆ CONCRETE LIGHT POLE ● WELL CKECK VALVE	IIICATCH BASINIIIYARD DRAINIZIELECTRIC HANDHOLEEEECELECTRIC METERIXIMETAL LIGHT POLEIXIBELL SOUTH MANHOLEIXICONCRETE LIGHT POLEIXIIWELL CKECK VALVE	D	STORM MANHOLE	Ø	CABLE TV RISER
☑ ELECTRIC HANDHOLE EEEC ELECTRIC METER ☆ METAL LIGHT POLE ④ BELL SOUTH MANHOLE ☆ CONCRETE LIGHT POLE ⑩ WELL CKECK VALVE	Image: Concrete light pole Image: Concrete light pole <td></td> <td>CATCH BASIN</td> <td>0</td> <td>YARD DRAIN</td>		CATCH BASIN	0	YARD DRAIN
☆ METAL LIGHT POLE ❷ BELL SOUTH MANHOLE ☆ CONCRETE LIGHT POLE ● Well CKECK VALVE	☆ METAL LIGHT POLE ☑ BELL SOUTH MANHOLE ☆ CONCRETE LIGHT POLE Image: Concrete Light pole Image: Concrete Light pole	Ø	ELECTRIC HANDHOLE	ELEC	ELECTRIC METER
CONCRETE LIGHT POLE 🛞 WELL CKECK VALVE	${\propto}$ concrete light pole 🛞 Well ckeck valve	\$	METAL LIGHT POLE	۵	BELL SOUTH MANHOLE
		\$	CONCRETE LIGHT POLE		WELL CKECK VALVE

SYMBOL LEGEND

CANDPY HIGHT

12′

12′

20′

20' 20' 20'

10′

12′

12′

54

55

58

59

60

61

62

63

64

65 66

4′

4′

6′

6′

6′

6′

8′

8′

8′

8′ ___

6′

4′

NORTH

TREE CHART

1.4′

0.6′

0.8′

1.0′

1.0'

1.0'

1.2′

1.0′

1.0′

1.5′

3.4′

1.6′

2.0′

TYPE

CABBAGE PALM

STRANGLER FI

SABLE PALM

PALM

PALM

PALM

LIVE DAK

PALM

LIVE DAK

LIVE DAK

LIVE DAK

LIVE DAK

LIVE DAK

CANDPY HIGH

15′

15′

25′

12′

12'

15′

15′

25′

25′

25′

25

35′

25′

35′

35′

45′

35′

35′

LETTER CIRCUMFERENCE DIAMETER

4.4′

1.9′

2.4′

3.3′

3.0'

3.0'

4.6′

10.6′

5.1′

6.2′ (X2)

SEAL: For the Firm Scott J. Douglass Professional Surveyor & Mapper Florida Registration No 4532
RIZONTAL ALE (FT) 23 15 30
5/11/2022 ELD BOOK HO HP SC, HO SC, 2001ALTA 200
NG DATA: ng date: 0.3 source: FII source: SE ed: SE dwg no: 22 dwg no: 22
DRAWIN Drawin fb/pg Drafter CADD SHE
By sub sub whp whp
: Description PDATE SURVEY PDATE SURVEY PDATE SURVEY PDATE SURVEY
REVISIONS Date 04/07/22 U 01/05/23 U 03/15/23 U
ET 33021 33021
STRE STOR 1000, FL
DAN HOLLYW SURVEY
SHERI NEX ALTA S ALTA
BO RIDA ERIDAN
PROJECT: 3090 SH
inc.
SSOCIATES IAPPERS
EAVY & AS RVEYORS & M LORIDA 33067 -7994 FAX: S No. 6727
ARED BY: UGLASS, LI FESSIONAL SUI t WILES ROAD AL SPRINGS, F CE: (954) 344 NSED BUSINES
PREP/ DOI 7914 COR/ OFFI

PREPARED FOR: MIKE CARTER CONSTRUCTION INC 435 12TH STREET WEST BRADENTON, FL. 34205

		TREE	CHART		
LETTER	CIRCUMFERENCE	DIAMETER	TYPE	CANDPY	HIGHT
54	4,4′	1.4′	CABBAGE PALM	6′	15′
55	1.9′	0,6′	STRANGLER FIG	3′	15′
56	2.4′	0.8′	SABLE PALM	5′	25′
57	3.3'	1.01			25'
58	3.0/	1.0'	PALM	<u> </u>	25'
59	31/	1.0'		<u> </u>	25'
<u> </u>	3.7'	1.0		15/	251
<u> </u>	3.0/	1.0/			25/
42	3.0	1.0		15/	25/
(2)	3.0	1.0		15/	25/
63	4,0	1.5	LIVE DAK	IJ	30
64	IU,6	3,4	LIVE DAK	20	45
65		1.6	LIVE DAK	12	35
66		2,0'	LIVE DAK	12'	35'
6/	5.7	1,8′	LIVE DAK	15'	55'
68	/.0′	2.2'	LIVE UAK	12'	45'
69	8.0′	2.5′	LIVE DAK	20′	45′
70	4.0′	1.3′	LIVE DAK	10'	50′
71	4.0′	1.3′	LIVE DAK	10'	50'
72	3.1′	1.0'	PALM	5′	20'
73	7.2′	2.3′	LIVE DAK	20′	40′
74	5.0′	1.8′	LIVE DAK	25′	35′
75	3.7′	1.2′	LIVE DAK	20′	25′
76	4.7′	1.5′	PALM	5′	20′
77			DEAD TREE		
78	4.1′	1.3′	DAHOON HOLLY	6′	15′
79	3,8′	1.2′	LIVE DAK	15′	30′
80	3.4′	1.1′	LIVE DAK	10′	20′
81	8,3′	2.6′	LIVE DAK	25′	40′
82	13.1′	4.2′	LIVE DAK	35′	50′
83	9,21	2.9′	LIVE DAK	15′	45′
84	8.2′	2.6′	LIVE DAK	25′	45′
85	5,8′	1.8′	LIVE DAK	35′	45′
86	4.6′	1.5′	GREEN BUTTONWOOD	20'	25′
87	6.8′	2.2′	LIVE DAK	20′	45′
88	7.8'	2.5′	LIVE DAK	25'	40'
89	7.5′ (X2)	2.4′	LIVE DAK	25'	45′
90	8.01	2.5′	LIVE DAK	45′	15'
91	4.2'	1.3'		201	45'
92	7.91	251		25'	45'
93	291	1.31		<u> </u>	15
94	5.0'	1.6	SI ASH PINE	201	651
95	5.7	1.8	LIVE DAK	<u> </u>	45'
96	6.31	2.0/		35'	40'
97	4.2'	1.31		35'	45'
98	4.0/	1.3		15/	50'
20	11.2/	261		<u> </u>	50'
100	11.2	1.3/		00	10'
100	2.0/	1.0		10/	40
102	2 Q'	1.0		15/	15/
100		1 27		20/	10/
10.3	J,U / 1/	1.0			
104	4.1	1 1/			30
100	4,4'	1.4	DIACK DIAK		40'
105	4,4'	1.4	BLACK ULIVE	45'	
107	3,5'		PALM	<u>ے '</u>	
100	4./'	1.5'	LIVE UAK	15'	45'
109	4.//	1.5'	LIVE DAK	15'	45'
110	/.9′	2.5'	LIVE DAK	35′	40'
111	/,8′	2.5'	LIVE DAK	20'	40'
112	1 7.51	2.4'	i live dak l	107	1 35′

PLA PAG RES REIN RIGH STA TOP TRA TYP ELE PLA	T BOOK E IDENT IFORCE CONCRE IT-OF-WAY TE ROAD OF CURB FFIC SIGNAL ICAL CTRIC OVERHEAI T RECORDS	TE PIPE
F	ΓΑΝΠΡΥ	ніснт
PALM	4'	12'
	4'	12'
PALM	6′	20'
PALM	6'	20'
PALM	6'	20'
PALM	6'	20'
TREE		
/ER		
VWOOD	8′	10'
/ER NWOOD	8′	12′
_DW IPET	8′	12′
TREE		
PALM	6′	12′
ER FIG	8′	30′
D TREE		
HOLLY	8′	15′
PALM	6′	15′
ER FIG	15′	35′
ΠΑΚ	6′	15′
E PALM	5′	10′
E PALM	5′	10′
E PALM	5′	6′
ER FIG	20′	30′
DAK	6′	15′
HOLLY	8′	15′
ER FIG	15′	25′
E PALM	3′	5′
ER FIG	8′	12′
HOLLY	6′	10′

15′

10′

6′

5′

4′

8′

5′

6′

6′

10′

5′

12′

5' 20'

4′ 15′

4′ 15′

4′ 12′

4′ 12′

4′ 15′

--

15′ 20′

8′

30′

25′

20′

15′

10′

12′

20′

15′

10′

12′

121

35′

20′

35′

40′

BACK OF WALK

DEED BOOK

FIRE HYDRANT

FIBER OPTIC

ELEVATION

FLOWLINE

HANDHOLE

MONUMENT

CONCRETE CABLE TELEVISION

CHAIN LINK FENCE

EDGE OF PAVEMENT

FLORIDA POWER & LIGHT

OFFICIAL RECORDS BOOK

PALM BEACH COUNTY RECORDS

LICENSED BUSINESS

OVERHEAD WIRES

[
	SYMBOL	LEGE	ND
	MISCELLANEOUS SIGN	-0-	WOOD POWER POLE
Χ	WATER VALVE	– ם	CONCRETE LIGHT POLE
ж	FIRE HYDRANT	\rightarrow	CONCRETE POWER POL
0	CLEAN-OUT	Ø	Ground Light Post w/ Water&Elect for Campers
Î	ANCHOR		IRRIGATION VALVE
	CURB INLET	4	GROUND LIGHT
O	STORM MANHOLE	Ø	CABLE TV RISER
	CATCH BASIN	0	YARD DRAIN
I	ELECTRIC HANDHOLE	ELEC	ELECTRIC METER
\$	METAL LIGHT POLE	۵	BELL SOUTH MANHOLE
\$	CONCRETE LIGHT POLE	(()	WELL CKECK VALVE

CONTRACTION DOUGHT	No. 4532	STATE OF	ALLORID F. C. C. R. I.D. F. C. L.
	HLANM		

² North Exterior Elevation

METAL FABRICATIONS SHERWIN WILLIAMS COLOR: SW7642 PAVERSTONE

EXTERIOR DOORS BENJAMIN MOORE COLOR: 2134-50 GULLWING GRAY

SPLIT FACE 8" CMU BLOCK PAINT: SHERWIN WILLIAMS SW7642 PAVERSTONE

PAINT:

MATERIALS PALETTE

SMOOTH SCORED 8" x 8" CMU BLOCK SHERWIN WILLIAMS SW7642 PAVERSTONE

SAFEGUARD STORAGE CONCEPTUAL DESIGN

3090 SHERIDAN STREET HOLLYWOOD, FLORIDA 33021

COLOR & MATERIALS KEY

		A	2.1							1 A5.2	•	2 A7	.1									
	9		(10) (12		(1	3 (1			6)		7) (18		9	2	0		21	
10'-0"		10'-0"		10'-0"	10'-0"		10'-	251'-4' •0"	OVERALL BUI	LDING 10'-0"	10'-0"		10'-0"	10'-0")'-0"	10'-	·0"	1	0'-0"	10	
~	 							,				e										
				ar ne ne jar ve ne ne			<u>u 10 11</u>			L CORNERS OF PRECEIVE PRO ARDS . TYPICA	STORAGE UNI TECTIVE CORN L SS	TS ER				0" HIGH /6'-8" HIG IRE MES	METAL F H ROLL H CEILIN	UP DO	ORS V	V/ D	S	
10X10		10X10		10X10	10X10		10)	(10	10X10	10X10	10X10		10X10	10X10	10)X10	10)	(10	1	0X10	10)	X 1
a8.0 RRIDOR a6.0	2-0-	a8.0 a6.0	╺╾╼╒	a8.0 a6.0	a8.0 a6.0	F .E.	a8.	0 a3.0	a8.0 a8.0	a8.0 a8.0	a8.0 a8.0		a8.0 a8.0	a8.0 a8.0		8.0	a8.	0	a	8.0	a8	.0
7.5X10		7.5X1(7.5X10	7.5X10			5X5 5X5	10X10	10X10	10X10		10X10	10X10	5X10	5X10	5X10	5X10	<u>5X10</u>	5X10	5X10	5
7.5X10		7.5X1)	7.5X10	7.5X10			a3.0	a8.0	a8.0	a8.0		a8.0	a8.0	a3.0	a3.0 a8.0	a3.0 a8	a3.0 3.0	a3.0	a3.0 a8.0	a3.0 CORR a	ے 10 8.1
a6.0 RRIDOR a6.0	5'-0"	a6.0		a6.0 a6.0	a6.0 a6.0) a3.0	5X5	5X10	5X10	5X10		5X10	5X10	5	X10	5X	10	5	X10	5X	[10
7.5X10		7.5X1	<u>-</u>	7.5X10	7(5710	5	0 	5X5									 		•			
7.5X10		7.5X1	,	7.5X10	7 55 10		COKKIDOK a3.0 a3.0	5X5 5X5	10X15	10X15	10X15		10X15	10X15	10)X15	10X	15	1	DX15	10)	(1
a6.0 RRIDOR	2-0"	a6.0		a6.0	a6.0				a8.0	a8.0	a8.0		a6.0	a6.0	a	6.0	a6.	0	a	6.0	a6 CORR	.0 .IC
					5X10	3.0 a3.0	1 3.0 a3.0	5X5	40.0		40.0	<u> </u>							•	ao.u		
10X20		10X20 		10000	5X10	a3.0 a;	 a3.0 a;	5×5			199520		10X20	10X20	10	X20	10X	20	1()X20	10>	(2
					5X10	a3.0	0 a3.0	625	ſ													
					5X10	.0 a3.(.0 a3.(Cox 5	0715	10X15 			CLIM	ATE CONT								
				P	sterno sterno	3.0 a3	a3 		a8.0	a3.0	-			<u>100</u> 								
10X30 		10X30 		107330	FR	a3.0					10X30 		10X30 — — — — — —	10X30 –	10	X30	10X	30	10)X30 	10>	(3
					5710	a3.0			evator #1 B D B #2						 				117'-	8"		
	┟╌┑		<u> </u>		5 ×10	a3.0			1 HOUR RATED	a3.0												
a8.0 DRRIDOR a8.0	-0 12	a8.0	╾╼╈╴	a8.0 	109	K 	L 10 	5	I Ino Icolumn	no <u>-</u> column -	a8.0 a8.0		a8.0 a8.0	a8.0		8.0 8.0	a8.	0	a	8.0 8.0	a COR a8	5.0
10210		10210		10-10	serviće Sink		LC	DADIN AREA	G	F.E.	1020		1020	= 10X10	10	X10	10X	10	10	X10	10X	(1)
	S			UNISEX					• 16'-0" •		он и и и и и и и и 2S			<u> </u>	DS	ar ar ar ar ar	99'-0"				I S	
						ŧ	<u>2-4</u>		5	* +	1 (A3.1)						-					
							(A5.1	(A7.	3			N. N	A7.1								

Wall Types BLOCK

8" SPLIT FACE CMU WALL . CORE FOAM FILLED . R-14.2 8" CMU WALL . CORE FOAM FILLED . R-14.2 ╋**┝**╡┿┿┥┥┝┿┿┝╛┿┿┥┥┿

┠┼┼┼┝╎┥┝┽┿┝┥┥┝┼┿┼┨

8" CMU WALL - 1 HOUR RATED - FULLY GROUTED

8" CMU WALL - 2 HOUR RATED - FULLY GROUTED

DRYWALL

METAL PARTITION

 \times 3 $\frac{5}{8}$ " METAL STUDS @ 16" O.C. W/ $\frac{5}{8}$ " THICK GYPSUM BOARD EACH SIDE. FULL HEIGHT. 6" METAL STUDS @ 16" O.C. W/⁵/₈" THICK GYPSUM BOARD EACH SIDE. FULL HEIGHT.

8'-0" HIGH METAL PARTITION SYSTEM W/6'-8" HIGH ROLL UP DOORS W/ WIRE MESH CEILING EXTERIOR WALL PANEL

2¹/₂ EXTERIOR INSULATED METAL WALL PANEL

SCALE: 3/32" = 1'-0"

		9			D	(1	(12)		(1	3)		14	(15		6		7		8		9	(2	0)		21)	
		 		 							251'-4	" OVER	ALL BUI	LDING						 					1	 		 	
10'-	0"		10'-	0"	10'	'-0"	10)'-0"	/	10'-	0"	10)'-0"	10	'-0")'-0"	10	'-0"	10	'-0"	10	'-0"	10'	-0"	10'	-0"	10	-0
		s			– 8'-0" W/6'- WIRE	HIGH M 8" HIGH E MESH	IETAL P IROLL ICEILIN	ARTITI UP DOC G ====		YSTE N/ = ==	EM		A Ti G	LL COR Q RECE UARDS	NERS (IVE PR . TYPIC I	F STOF OTECTI CAL	RAGE UI VE COR	NITS NER]								
10X	10		10X	10	10)	X10	10	X10		10X	(10	10	X10	10	X10	10	X10	10	X10	10	X10	10	X10	10>	(10	10)	X10	10	X1
a8.(2 ⁻⁰	¦co	a8.0		a8	.0	a8	3.0 [–]	F.E.	a8.0	0	a8	3.0	a8	5.0	a8	3.0	a8	3.0	a8	.0	a8	5.0	a8.	.0	a8	.0		3.0 ID(
5X ⁴	10 10		5X	10 10	5)	x10	5	X10		a3.0	5X5	a3.0		a3.0		a3.0	a3.0	a3.0	a3.0	a3.0	a3.0	a3.0	a3.0	a3.0	a3.0	a3.0		a3.0	T
5X'	10	╞		10	5)	 X10	5	 X10		a3.0	5X5	5X10	5X10	5X10	5X10	5X10	5X10	5X10	5X10	5X10	5X10	5X10	5X10	5X10	<u>5X10</u>	5X10	5X10	5X10	
a8 C 0	.0 ORRID a3.0		5'-0"	a8.0 a3.0	a3.0	a8.0 a3.0	a3.0	a8.0 a3.0		a3.0	5X5	5X10	5X10	5X10	5X10	5X10	5X10	5X10	5X10	5X10	5X10	5X10	5X10	5X10	5X10	5X10	5X10	5X10	
		a3	3.0					<u> </u>		a3.0	5X5															, <u>5, 10</u>		<u></u>	
0	5X10	5X	(10	5X10	5X10	5X10	5X10	5X10		L		a3.0 a8	a3.0 3.0	a3.0	a3.0	a3.0	a3.0	a3.0	a3.0	a3.0	a3.0 .0	i a3.0	a3.0	a3.0	a3.0	a3.0 a8	a3.0	a3.0 CORR a8	ت عاد 3.0
5x1	0		 5x1	0	5x	 x10	5	 ×10	5	a3.0 0	5X5				F		F						<u>F</u>			, ₹ 			
a8.0)RR	.0 RIDOR 5.0 نم a6.0		a8	.0	a8	3.0		33.0	5X5	103	K10	10>	(10	103	K10	10>	(10	10>	(10	10>	(10	10X	10	10X	(10	10>	(1)		
a6	.0			.0		6.0		6.0		3.0 C	5¥5			<u> </u>		<u> </u>										<u> </u>			
7.5	×10		.57		7.8	5×10	/. 	5710		3.0 a	5X5	102	K 15	10>	(15	102	K15	10>	(15	10>	(15	10>	(15	10X	15	10X	(15	10>	K1 !
7.5	x10		7.5	K10 -	7.5	5X10	7.	5X10	╎	a3.0a	5X5	 		•				•		•						• — ——		 	
a6 RR	.0 IDOR	10 10	a 6	.0	a	6.0	<mark>∦</mark> ∣ a	6.0] I	[<u> </u>	a8.	0	a8.	0	∎a8. ⊥a8.	.0	∣ a8.	0	a8.	0	∎a8. ∣	0	a8.	0	a8.	.0		.0 RIC
a8.()		a8.	0	a8	.0		3.0		3.0	5X5	e	18.0 _	a	8.0	e I	18.0 _	a	8.0 	a	8.0	a	8.0	a8	3.0	ai 	8.0	a	18.0
10X	15		10X	15	10)	X15	10	X15		। а3.0а	5X5	10	X20	10X20		10X15 10X1		X15	10X15		10X15		X15 10X1		10X15 10>		10)	X1	
						1		\sim		a3.0	5X5		}															1	
					WOM H.C.		5)	K10	a3.0	12a3.0	5X5	HOUR		,	<u></u>	 		_		IATE STOF	CONT RAGE	ROL				 		 •	
10X	20		10X	20	20 102	24 X20			20 			16 levator ! #1 ₪	Eleva		5X10	10	X20	102	X20	10)	00 (20	102	X20	10X	20	10) 117'-8	{20	10)	X2
					H.C.	N'S TL T . 33			20			1 HOU			/a3.0	 				-		-				, — — !			
a8.0)RR		<u>∥_</u> 	a8.0)				8.0		-1 / 28	0	 a	3.0	F.E.	3.0		<u>_</u> 18.0 3.0	a	8.0 8.0	a	8.0	a	8.0	a8	3.0 0	a a8	8.0	a COR	18.0
10X	10		10X	10	102	X10	10	×10		10X	<u>.</u> (10	10	X10	10	۳ ۵ ۲ X10	102	x10	10)	(10	10>	(10	10)	(10	10X	.10	10)	(10	10>	×1
	= = <u></u> D	s			<u>-</u>	<u>−</u>	<u> </u>	<u>=</u>		<u>=</u> = \				↓	= \ =	-				 	<u> </u>	<u> </u>		 		<u></u>	<u></u>	s S	_
							R 			/ER /																T			
						2-8			2-	4																			

Wall Types BLOCK

8" SPLIT FACE CMU WALL . CORE FOAM FILLED . R-14.2

8" CMU WALL . CORE FOAM FILLED . R-14.2

8" CMU WALL - 1 HOUR RATED - FULLY GROUTED ╋┝**╎┽┽┥┽┝┽┿┝╎┽┼┥┥**┿

8" CMU WALL - 2 HOUR RATED - FULLY GROUTED

DRYWALL

METAL PARTITION

KXXXXXXXX 3 $\frac{5}{8}$ " METAL STUDS @ 16" O.C. W/ $\frac{5}{8}$ " THICK GYPSUM BOARD EACH SIDE. FULL HEIGHT. 6" METAL STUDS @ 16" O.C. W/⁵/₈" THICK GYPSUM BOARD EACH SIDE. FULL HEIGHT.

8'-0" HIGH METAL PARTITION SYSTEM W/6'-8" HIGH ROLL UP DOORS W/

EXTERIOR WALL PANEL

2¹/₂ EXTERIOR INSULATED METAL WALL PANEL

WIRE MESH CEILING

			2			3		I)	٤	5		3		2	(8	3	g		
	6"	10'-2"		10'-	0"	10'	'-0"	10'	-0"	10'-	0"	10'-	0"	10'-	0"	10'	-0"	1(0'-0"
					Ē							S I						S /	
=			• 10X2	20		102	, X10	10)	(10	10X	(10	10X		10X	10	10)	(10	11	DX10
_		10X10	a8.0	a8.0	0 (a3.0 5X5) a8 E. a 5)	8.0 18.0 K10	a8. a 5 X	0 8.0	a8. a8 5X	0 3.0 10	a8. a8 5X	0 3.0 10	a8.0 a8 5 X) 3.0 10	a8. a 5 X	0 <u>8.0</u> 10	CORF	8.0 RIDOF a8.0
_		10X10	a8.0		5X5 a3.0	5)	K10 18.0	5X	8.0	5X10 a8.0		5X	10 3.0	5X	10 3.0	5X a8	.10 3.0 CORRID	5 0R ^{.0} .	5 X10
_		10X10	a8.0	13.0 a3.0	5X5	5X10	5X10	5X10	5X10	5X10	5X10	5X10	a3.0	5X10	5X10	5X10	5X10	a3.0 5X10) 57
_		10X10	a8.0	a3.0 a	5X5	5 x a8	10	5x a8.	10	5x ^	10	5 x1 a8.	IO	5 x1 a8.				5	5 x10 a8.0
_		10X10	a8.0	a8.0	a3.0 • 5X5	a(6.0 5X10	a6 7.5	5.0 X10	a6 7.5	.0 X10	a6 7.5	.0 X10	a6 7.5	.0 x10	7.5	x10	ن د 7	a6.0 . 5X10
_		10X10	a8.0		5X5 5X5 	7.5	5X10 -	7.5	X10	- 7.5	X10	7.5	x10 - 1	7.5	x10	7.5	X 10	7	. 5X10
-	 		 0.8	a3.0	5X5	a8	.0 	a8.	0	a8.	0	a8.	0	a8.()	CORF a8.	IDOR 0		<u>18.0</u>
-		40¥40		a3.0 a3.0	5X5 5X5	10>	X15 	10>	(15	10X15 		10X 	15	10X	15	10>	(15 — — —	10)X15
_		40×10	a8	0.0 8 0.0 8 5X5 5X5	5X5 5X5	 10X20		10X20						10X20					 0X20
-				a3.0 a3.0	5X5 5X5														
_		10X10			0 F 302 } ₽	E. a8	a6.0	a8. a8.	0	a8. a8.	0	a8.0	0	a8.0 a8.0))	a8.0 CORRID(a8.0			8.0 8.0
_	1 HOUR RATED			STAI #2 302 fire	AIF #2 302 fire riser	2 HOUR RATED L	I0X10	10>	(10	10X	(10	10X	10	10X	10	10>	(10	1(DX10
					ا ۲ – – – –	s	3 A9.2)			D	s S						l S	
								- SOLI THIS 2 HO FUTL	D GROU WALL (UR MIN JRE BD/	JT ALL C DF STAII . RATED A INSTA	CELLS I R SHAF FOR LLATIO	N T N.							
TOP OF UNIT PARTITIONS TO B COVERED W/ 2 X 2 MESH @ 8'-(1. STOP PROPC	RAGE U DSED AC	NITS BE CESSIE BE PRC		THE ACC T LOCAT WITH 'AI	CESSIB TIONS. DA ACC		'MBOL E' WAL	INDICAT	ES						
PROVIDE LINER PANEL ON GYPSUM BOARD INTERIOR WALL WITHIN STORAGE UNITS						SIGN D W/FBC- 3. ACCI ADA CO SHALL	OIRECTL -A 703 S ESSIBLE OMPLIA BE AT 1	y adja(Igns. E Units Nt opei 5" Min.	CENT TO W/OVE NING AN AND 48	D THE U RHEAD ND CLOS " MAX.	NIT DO DOORS SING ST	OR COM S SHALL FRAPS.	IPLYIN BE OU LOOP (G TFITTED DF STRA	W/ P				
MAINTAIN 5'-0" CORRIDOR WID			4. DOO PRESS	R TENS URE TO	ION TO OPERA	BE ADJ TE.	USTED ⁻	TO REG	QUIRE LE	ESS TH	AN 5 LBS	6 OF	E	┿┿┝┤┥┝	┿┿┝┥┽┝	₩			

1 Third Floor Plan SCALE: 3/32" = 1'-0"

Z

(9					11		2	(13)	(-	14)		15		6		7		18	(-	9	(2	0		21)	
									251'-4	4" OVER	ALL BU	ILDING		 												 	
10'-0"	 	10'-0)" 	10'	'-0"	10'	-0"	10)'-0")'-0"	10'	-0"	10	'-0"	10)'-0"	10	'-0"	10)'-0"	10'	-0"	10	'-0" 	10)'-0
		1011		- 8'-0" W/6'-{ WIRE	HIGH M 8" HIGH MESH	ETAL PA ROLL U CEILING		N SYST RS W/	EM		— A Ti G = — —		NERS C VE PR(. TYPIQ = = ==		AGE UN /E CORI		<u> </u>		[۲ <u></u>		
							~10								×10				<u></u>				~10		<u></u>		
a8.0 ح م a8.0 ^{تر}	co	a8.0 RRID a8.	OR	a8	.0 18.0	a8.	.0	5 at .E.	3.0	a8	3.0 	a8	.0 	a8 a3.0	a3.0	a8 a3.0	3.0 	a8	.0 	a8	3.0 	a8 a3.0	.0 	a8 a3.0	i.0 	at CORI a3.0	8.0 RID
5X10		5X1	0	5)	(10	5X	(10		5X5	5X10	5 X10	• 5X10	5X10	5 X10-	5X10	5 <u>5</u> 10	- 5 X10	5X10	5X10	5 X10 ⁻	5X10	5X10	- 5X10 -	5 <u>x10</u>	5X10	5X10	
5X10 a8.0		5X1	0 8.0	5) a	K10 18.0	5 X	(10 8.0		5X5																		-
	a3	לי 0.0	a3.0	a3.0	a3.0	a3.0	a3.0		ଟି 5X5	<u>5X10</u>	<u>5X10</u>	<u>5X10</u>	<u>5X10</u>	<u>5X10</u>	<u>5X10</u>	<u>5X10</u>	<u>5X10</u>	<u>5X10</u>	<u>5X10</u>	<u>5X10</u>	<u>5X10</u>	<u>5X10</u>	<u>5X10</u>	<u>5X10</u>	<u>5X10</u>	<u>5X10</u>	<u>_</u>
0 5X10	5X	10	5X10	5X10	5X10	5X10	5X10	5'-0"	*	a3.0	 a3.0	a3.0	a3.0	a3.0	a3.0	a3.0	a3.0	a3.0	a3.0	a3.0	a3.0	a3.0	a3.0	a3.0	a3.0	a3.0	; RIC 8.0
5x10		 5x1(5x	10 	5x	10		5X5										F								
a8.0 RRIDOR a6.0	2-0"	a8.0)))	a8 a(.0 6.0	a8.	.0 3.0		2 2 5 X5	102	X10	10X	.10 	10>	(10	10>	K10	10X	(10 	10>	<10 	10X	10	102	ڏ10 	102	X10
7.5X10		7.5X	10	7.5	5X10	7.5	5X10		5X5		¥15	108	15	10)	/15		(15	101	/15	10)	(15	108	15		(15	10	¥1
7.5X10	-	7.5X	10 -	7.5	5X10	7.5	5X10		g 5X5															•			
a6.0 RRIDOR	2-0-	a6.())	a	6.0		<u></u> 3.0			a8.	.0	a8.0) ° 0	a8.	0	a8.	.0	a8.0	0	a8.	0	1 a8.	0	a8	.0		3.0 RIC
ao.u		ao.u	,		.0	ao	.0		5X5		10.U		0.0 _		0.0				0.0		10.U		5.0		0.0		10.0
10X15		10X1	5	102	X15	10>	(15		5X5	10	X20	102	X20	10)	(15	102	X15	10)	(15	10	X15 _	10>	(15	102	X15	10)X1
									5X5	2)					1								1			
						•			5X5	1 HOUR 16	RATED		<u> </u>	-			CLIN 	MATE Stof		ROL				•			
10X20		10X2	20	10)	X20	10)	(20		I HOUR RAT	Elevator 1 #1 🛛	Eleva e B #2		5X10	10)	K20	10	X20	10>	K20	10	X20	10>	(20	10 2 117'-8	K20 ;"	10	IX2
				·									a3.0					a						• • •			
a8.0 DRRIDOR a8.0	5'-0"	a8.0 a8.0		a8 a8	.0 .0	a8. a8	.0 3.0	l a	8.0	a	8.0	 a8		a 1 a8	8.0 .0	a a8	a8.0 3.0	a a8	8.0 .0	a8	18.0 3.0	a8	3.0 .0	a a8	8.0 3.0		a8.0 ≀RI 8.0
10X10		10X1	0	10)	X10	10)	(10	10	X10	10)X10	10)	5-6 7 X10	10>	(10	10)	X10	102	(10	10)	K 10	10X	10	10)	(10	10	X1
				<u> </u>		 		s S		<u> </u>	_	<u> </u>	= \ =	s S				<u> </u>		<u> </u>				<u> </u>	<u> </u>		

Wall Types

8" CMU WALL . CORE FOAM FILLED . R-14.2

8" CMU WALL - 1 HOUR RATED - FULLY GROUTED ┠╾┝**╎┽┽┥**┽┝┿┿┝╎┽┿┥┽┾┨

8" CMU WALL - 2 HOUR RATED - FULLY GROUTED

DRYWALL

KXXXXXXX3 5" METAL STUDS @ 16" O.C. W/5" THICK GYPSUM
BOARD EACH SIDE. FULL HEIGHT. 6" METAL STUDS @ 16" O.C. W/5" THICK GYPSUM BOARD EACH SIDE. FULL HEIGHT.

METAL PARTITION

8'-0" HIGH METAL PARTITION SYSTEM W/6'-8" HIGH ROLL UP DOORS W/ WIRE MESH CEILING

EXTERIOR WALL PANEL

2¹/₂" EXTERIOR INSULATED METAL WALL PANEL

 Image: The second s

AERIAL VIEW FROM NORTHEAST

SAFEGUARD STORAGE CONCEPTUAL DESIGN

3090 SHERIDAN STREET HOLLYWOOD, FLORIDA 33021

AERIAL VIEW FROM SOUTHWEST

SAFEGUARD STORAGE CONCEPTUAL DESIGN

3090 SHERIDAN STREET HOLLYWOOD, FLORIDA 33021

AERIAL VIEW FROM NORTHWEST

SAFEGUARD STORAGE CONCEPTUAL DESIGN

3090 SHERIDAN STREET HOLLYWOOD, FLORIDA 33021

AERIAL VIEW FROM WEST

SAFEGUARD STORAGE CONCEPTUAL DESIGN

3090 SHERIDAN STREET HOLLYWOOD, FLORIDA 33021

EYE LEVEL VIEW FROM NORTHWEST

SAFEGUARD STORAGE CONCEPTUAL DESIGN

3090 SHERIDAN STREET HOLLYWOOD, FLORIDA 33021

Florida Department of Transportation

RON DESANTIS GOVERNOR

605 Suwannee Street Tallahassee, FL 32399-0450 JARED W. PERDUE, P.E. SECRETARY

February 21, 2023

THIS PRE-APPLICATION LETTER IS VALID UNTIL - February 21, 2024 THIS LETTER IS NOT A PERMIT APPROVAL

Julian Bobilev, AICP Greenspoon Marder LLP 200 East Broward Boulevard, Suite 1800 Fort Lauderdale, FL 33301

Dear Julian Bobilev, AICP: RE: Pre-application Review for **Category B Driveway**, Pre-application Meeting Date: **January 19, 2023** Broward County - Hollywood; SR 822; Sec. # 86230000; MP: 2.40; Access Class - 5; Posted Speed - 35; SIS - Influence Area; FDOT Ref. Project: FM 439170.1-Leslie Wetherell-INTERCHANGE JUSTIFICA/MODIFICA

Request: Access the site through 31st PI

SITE SPECIFIC INFORMATION Project Name & Address: Safeguard Self Storage Expansion – 3090 Sherman St., Hollywood, FL, 33021 Property Owner: PPF SS 3090 SHERIDAN STREET LLC; Parcel Size: 5.25 Acres Development Size: Existing: 112,036 SF Self-storage, Proposed: 194,111 SF.

NO OBJECTION

This decision is based on your presentation of the facts, site plan and survey - please see the conditions and comments below. You may choose to review this concept further with the District Access Management Review Committee (AMRC).

Conditions:

- A minimum driveway length of 100 feet, as measured from the ultimate right-of-way line to the first conflict point shall be provided.
- If a gate is proposed, a minimum driveway length of 200 feet to the call box and/or gate house, and a turnaround area before the gate are required.

Comments:

- All driveways not approved in this letter must be fully removed and the area restored.
- A Drainage Permit is required for any stormwater impacts within FDOT right-of-way (i.e. increased runoff or reduction of existing storage).
- •
- The applicant shall donate property to the Department if right-of-way dedication is required to implement the improvements. Dimensions between driveways are measured from the near edge of pavement to near edge of pavement and for median openings are • measured from centerline to centerline unless otherwise indicated.

The purpose of this Pre-Application letter is to document the conceptual review of the approximate location of driveway(s) to the State Highway System and to note required improvements, if any. This letter shall be submitted with any further reviews and for permitting. The Department's personnel shall review permit plans for compliance with this letter as well as current Department standards and/or specifications. Final design must consider the existing roadway profile and any impacts to the existing drainage system. <u>Note, this letter</u> does not guarantee permit approval. The permit may be denied based on the review of the submitted engineering plans. Be aware that any approved median openings may be modified (or closed) in the future, at the sole discretion of the Department. For right-of-way dedication requirements go to: <u>https://osp.fdot.gov;</u> click on Statewide Permit News; Scroll down to District 4; Scroll down to Additional Information and Examples and choose Right-of-way Donations/Dedications.

Please contact the Access Management Manager - Tel. # 954-777-4363 or e-mail: D4AccessManagement@dot.state.fl.us with any guestions regarding the Pre-Approval Letter.

Sincerely,

Kollol Shams, P.E. **District Access Management Manager**

Page 1 of 1

April 13, 2023

Ms. Azita Behmardi, P.E. City Engineer City of Hollywood 2600 Hollywood Boulevard, Suite 308 Hollywood, FL 33022-9045

RE: Safeguard Self Storage Traffic Analysis and Site Plan Review Comment Response Letter McMahon Project No. L23118.01

Dear Ms. Behmardi:

Please accept this letter as our response to the traffic study review comments, prepared by Lisa S. Bernstein, P.E., dated March 28, 2023, for the Safeguard Self Storage Traffic Analysis. The comments are provided below. For your convenience we have prepared our responses in bold italics.

Traffic Circulation Analysis

Comment 1:	Please include the entire property in the site location map, as it is an expansion of an existing site.
Response:	We updated the site location map to include the entire property.
Comment 2:	The trip generation square footage (SF) does not match the site data on the site plan. The site data states there is 156,912 SF of existing warehouse (after demolition), 91,485 SF of proposed warehouse for a total of 248,397 SF. Please revise accordingly.
Response:	The trip generation table was updated to match the correct intensity. The existing Taft Industrial intensity is 112,036 square feet. In the proposed conditions, 9,410 square feet of buildings will be demolished, and 91,485 square feet of new building will be added. Therefore, the proposed intensity of the Taft Industrial will be 194,111 square feet. The existing intensity for Sheridan Industrial is 54,286 square feet, which will remain same in proposed conditions.
Comment 3:	The driveway volumes need to be the total site volumes.
Response:	We updated the driveway volumes to reflect the total site volumes.
Comment 4: Response:	Please use the revised trip generation for the queuing analysis. Gate queuing analysis was performed only for the Taft Industrial site. The Sheridan Industrial site access is separate from the access to the Taft Industrial site and is not being modified for proposed conditions.

Comment 5: Response:	In the queuing analysis, "N" is labeled as number of elevators. Please revise to lanes. We corrected the labeling of "N" as number of lanes in the queuing analysis.							
Comment 6:	Please show the gate distance from the right-of-way on the site plan. It does not appear to be 43 feet.							
Response:	The gate distance from the right-of-way is 35 feet, which is shown on the site plan.							
Site Dlan Can								

Site Plan Comments

Comment 1: Please include the entire site plan, one sheet should show the signing and marking for traffic circulation review of the site and access.

Response: The entire site plan is included in Appendix A.

Should you have any questions regarding the information contained herein, please do not hesitate to contact me.

Sincerely,

1 Them.

Natalia T. Lercari, P.E. Senior Project Manager

NTL/cec – Attachment

 $\label{eq:label_state} \label{eq:label_state} \label{eq:label_state} $$ \L23118_01\Correspondence\Letters\CR_Letter_041323.docx \label{eq:label_state} \label{$

April 13, 2023

VIA E-MAIL

Rachel Whitcomb Layton, AICP Mike Carter Construction, Inc. 435 12th Street West Bradenton, FL 34205

RE: Safeguard Hollywood Traffic Analysis McMahon Project No. L23118.01

McMahon, a Bowman company (McMahon) has completed a traffic analysis associated with the proposed redevelopment of a site located between Sheridan Street and Taft Street, just east of N 31 Avenue, in the City of Hollywood, Florida. The site currently includes the Sheridan Industrial site and the Taft Industrial site. The Sheridan Industrial site currently includes 54,286 square feet of self storage. No change in density is proposed on this site. The Taft Industrial site currently includes 112,036 square feet of self storage. The Taft Industrial site redevelopment will include the demolition of 9,410 square feet and the addition of 91,485 square feet of self storage, for a total proposed self storage density of 194,000 square feet. **Figure 1** graphically depicts the site location. The site plan for the self-storage is attached in **Appendix A**.

Figure 1 Site Location

Trip Generation Analysis

Using trip generation information obtained from the Institute of Transportation Engineers (ITE), *Trip Generation Manual*, 11th Edition, trip generation estimates were developed for the existing and proposed development. The trip generation analysis for daily, AM peak hour, and PM peak hour conditions are summarized in **Table 1**. The proposed self-storage is expected to generate an increase of 119 daily, seven (7) AM and 12 PM peak hour trips. **Appendix B** contains the ITE trip generation information.

Table 1 Trip Generation Analysis

DAILY								
	ITE	INITENCITY	TRIP GENERATION	IN	OUT	TOTAL TRIPS		
LAND USE	CODE	INTENSITY	RATE ⁽¹⁾			IN	OUT	TOTAL
Taft Industrial								
Self-Storage - Existing	151	112,036 SF	T= 1.45 (X)	50%	50%	81	81	162
Self-Storage - Proposed	151	194,111 SF	T= 1.45 (X)	50%	50%	141	140	281
NET DIFFERENCE						60	59	119
Sheridan Industrial								
Self Storage - Existing	151	54,286 SF	T= 1.45 (X)	50%	50%	40	39	79
Self Storage - Proposed	151	54,286 SF	T= 1.45 (X)	50%	50%	40	39	79
NET DIFFERENCE						0	0	0
Total Proposed						181	179	360

AM PEAK HOUR

		INITENICITY	TRIP GENERATION	IN		TOTAL TRIPS			
LAND USE	CODE	INTENSITY	RATE ⁽¹⁾		001	IN	OUT	TOTAL	
Taft Industrial									
Self-Storage - Existing	151	112,036 SF	T= 0.09 (X)	59%	41%	6	4	10	
Self-Storage - Proposed	151	194,111 SF	T= 0.09 (X)	59%	41%	10	7	17	
NET DIFFERENCE						4	3	7	
Sheridan Industrial									
Self Storage - Existing	151	54,286 SF	T= 0.09 (X)	81%	19%	4	1	5	
Self Storage - Proposed	151	54,286 SF	T= 0.09 (X)	81%	19%	4	1	5	
NET DIFFERENCE						0	0	0	
Total Proposed						14	8	22	

PM PEAK HOUR

		INITENCITY	TRIP GENERATION	IN		TOTAL TRIPS			
LAND USE	CODE		RATE ⁽¹⁾		001	IN	OUT	TOTAL	
Taft Industrial									
Self-Storage - Existing	151	112,036 SF	T= 0.15 (X)	47%	53%	8	9	17	
Self-Storage - Proposed	151	194,111 SF	T= 0.15 (X)	47%	53%	14	15	29	
NET DIFFERENCE						6	6	12	
Sheridan Industrial									
Self Storage - Existing	151	54,286 SF	T= 0.15 (X)	22%	78%	2	6	8	
Self Storage - Proposed	151	54,286 SF	T= 0.15 (X)	22%	78%	2	6	8	
NET DIFFERENCE						0	0	0	
Total Proposed						16	21	37	

(1) ITE Trip Generation Manual, 11th Edition.

Project Access

The self-storage site will be served by one (1) existing, full-access driveway connection to Sheridan Street via N 31 Avenue. The driveway connection includes an exclusive westbound left turn lane.

Project Distribution and Driveway Volumes

The distribution of project traffic onto the surrounding roadways was based on a review of the surrounding area land uses, existing travel patterns, and the characteristics and connectivity of the roadways near the project site. **Figure 2** graphically depicts the project distribution and driveway volumes.

Figure 2 Project Distribution and Driveway Volumes

Sheridan Street Turn Lane Analysis

The Florida Department of Transportation (FDOT) criteria for exclusive turn lanes at unsignalized driveways was reviewed for Sheridan Street, which has a posted speed limit of 40 miles per hour (MPH). According to the FDOT 2019 *Access Management Guidebook*, for state roads with posted speed limits of 45 MPH or less, it is recommended to have an exclusive right-turn lane when the driveway generates 80 to 125 right-turning vehicles per hour. The highest number of peak-hour right-turns into the site is expected to be eight (8) vehicles, which will not warrant an exclusive eastbound right-turn lane.

Gate Queueing Analysis

The Taft Industrial facility is currently gated and will continue to be gated with the additional development. Therefore, gate queuing analysis was performed only for the Taft Industrial facility. With the proposed redevelopment, access to the site will be controlled by a lift gate located approximately 35 feet from

N 31 Avenue/Sherman Road. This will allow stacking for approximately one (1) vehicle. A queuing analysis was performed for the gate operations. The analysis was based on the peak hour time period for vehicles entering the site.

Trip generation analysis was performed for the peak hour of the generator during weekday AM, weekday PM, Saturday peak and Sunday peak of the generator to determine the peak period for the site, based on the ITE, *Trip Generation Manual*, 11th Edition. Results of the analysis, summarized in **Table 2**, indicate that the peak period for traffic entering the site will occur during a Saturday, where 20 vehicles will be expected to enter the site. Excerpts from ITE are attached in **Appendix C**.

	ITE	INTENSITY		GENERATION	IN		TOTAL TRIPS			
	CODE		5111		DATE (1)		001	IN	OUT	TOTAL
AM PEAK GENERATOR										
Self-Storage	151	194,111	SF	T=	0.18 (X)	51%	49%	18	17	35
PM PEAK GENERATOR										
Self-Storage	151	194,111	SF	T=	0.18 (X)	51%	49%	18	17	35
SATURDAY GENERATOR	2									
Self-Storage	151	194,111	SF	T=	0.17 (X)	62%	38%	20	13	33
SUNDAY GENERATOR										
Self-Storage	151	194,111	SF	T=	0.2 (X)	45%	55%	18	21	39

Table 2 Trip Generation Analysis – Peak of the Generator (Queueing Analysis)

(1) Source: ITE Trip Generation Manual, 11^{th} Edition.

The queue analysis was performed based on the methodology outlined in the *Transportation and Land Development*, 1988, published by ITE, excerpts of which are attached in Appendix C. The gate queueing analysis worksheet is attached in Appendix C. The required storage (M) in vehicles is determined by the following equation:

$$M = [\underline{\ln P(x > M) - \ln Q_{M}} - 1]$$

In p

- $\rho = q/NQ$. ρ is the coefficient of utilization, which is the ratio of the demand rate to the service rate.
- q is the demand rate and is the peak vehicles per hour based on the trip generation analysis. For this analysis <u>q = 20 vehicles per hour</u>.
- N is the number of lanes to enter the site. For this analysis, N = 1 lane.
- Q is the processing rate per hour for each lane. The gate is anticipated to be a lift gate. Patrons will be required to stop at the gate and use a fob or card reader to access the stie. The assumed processing time is approximately 15 seconds (0.25 minutes).

Results of the analysis indicate that no queueing is expected at the gate. The required storage would, therefore, be one (1) vehicle to accommodate the vehicle being serviced at the gate entrance. As previously mentioned, the site will provide storage for approximately one (1) vehicle. Therefore, the site will provide sufficient storage without extending onto N 31 Avenue/Sherman Road.

Conclusion

Based on the analysis contained herein, the following can be concluded:

- The proposed self-storage is expected to generate an increase of 119 daily, seven (7) AM and 12 PM peak hour trips.
- All project traffic entering and exiting the self-storage site is expected to use the driveway connection to Sheridan Street. At the Sheridan Street driveway, an exclusive westbound left turn lane currently exists. The maximum eastbound right turn volume is expected to be eight (8) vehicles; therefore, per FDOT guidelines, an eastbound right turn lane is not required.
- The gate queueing analysis for the self-storage facility indicates that sufficient stacking is provided onsite to accommodate the expected demand without stacking onto N 31 Avenue/Sherman Road.

Should you have any questions or comments regarding these findings, please do not hesitate to gat m

License No. 68205 State of Florida, Board of Professional Engineers Certificate of Authorization No. 4908

NTL/cec

FL\23118L_MikeCarter_SafeguardHollywoodTA\L23118_01\Reports\Revised_April_2023\StorageOnly\LtrRL041323.docx

Appendix A

Site Plan

mcmahonassociates.com | bowman.com

100% CONSTRUCTION DOCUMENTS

E.O.P.

CIVIL SITE PLAN

SCALE: 1"=30'

Appendix B

Trip Generation Information

Land Use: 151 Mini-Warehouse

Description

A mini-warehouse is a building in which a number of storage units or vaults are rented for the storage of goods. They are typically referred to as "self-storage" facilities. Each unit is physically separated from other units, and access is usually provided through an overhead door or other common access point.

Additional Data

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/trip-and-parking-generation/).

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in California, Colorado, Massachusetts, Minnesota, Nevada, New Jersey, Texas, and Utah.

Source Numbers

212, 403, 551, 568, 642, 708, 724, 850, 868, 876, 1024, 1035

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday

Setting/Location: General Urban/Suburban

Number of Studies: 16

Avg. 1000 Sq. Ft. GFA: 55

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.45	0.38 - 3.25	0.92

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 13

Avg. 1000 Sq. Ft. GFA: 70

Directional Distribution: 59% entering, 41% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.09	0.04 - 0.17	0.05

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 18

Avg. 1000 Sq. Ft. GFA: 59

Directional Distribution: 47% entering, 53% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.15	0.02 - 0.64	0.14

Appendix C

Gate Queueing Analysis Information

mcmahonassociates.com | bowman.com

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

AM Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 11

Avg. 1000 Sq. Ft. GFA: 66

Directional Distribution: 51% entering, 49% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.18	0.07 - 0.79	0.16

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

PM Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 16

Avg. 1000 Sq. Ft. GFA: 56

Directional Distribution: 51% entering, 49% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.18	0.06 - 1.05	0.14

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 3

Avg. 1000 Sq. Ft. GFA: 90

Directional Distribution: 62% entering, 38% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.17	0.04 - 0.31	0.14

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Sunday, Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 2

Avg. 1000 Sq. Ft. GFA: 79

Directional Distribution: 45% entering, 55% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Data Plot and Equation

Caution – Small Sample Size

Transportation and Land Development

Vergil G. Stover / Frank J. Koepke

Institute of Transportation Engineers

Chap. 8 / Drive-In Facilities

TABLE 8-1

Design-Hour Lobby Traffic Generation for Banks with Drive-In Windows

Gross Floor Area Used by Bank	Hourly One-Way Traffic Generation (per 1,000 sq. ft.)
5,000 to 20,000 sq. ft.	15 to 20 vehicles
20,000 to 40,000 sq. ft.	10 to 15 vehicles
Over 40,000 sq. ft.	5 to 10 vehicles

SOURCE: Peter N. Scifres [8].

Parking. It is desirable to have as much traffic as possible use the drive-in windows. Petersen [7] reported a 50-50 split between lobby and drive-thru customers (when the drive-thru facilities are not unduly congested. Customer parking duration averages about 15 to 20 minutes. During the peak period, parking demand should not exceed 90% of the parking capacity if customers are to be able to find a parking space without excessive delay. Scifres [8] reported customer parking requirements as given in Table 8-2.

TABLE 8-2

Design-Hour Lobby Customer Parking Requirements for Banks with Drive-In Windows

Customar Parking Requirements (per 1,000 sq. ft.)
2.0 to 2.5 Spaces 1.5 to 2.0 Spaces 1.0 to 1.5 Spaces

SOURCE: Peter N. Scilres [8].

Drive-In Window Requirements. The number of service positions required is a function of the average service time and the demand. The technique contained in the section "Analysis of Service Times," presented later in this chapter, can be used to calculate the average time in the system and the average time in the queue for different operating conditions (number of service positions, number of tellers, average service time, and demand) in order to help evaluate proposed designs.

Bank officials commonly underestimate service and waiting time; therefore the average service time should be obtained through observation of similar facilities in the local area, since wait time and, theoretically, storage requirements are fairly sensitive to the parameter.

Table 8-3 gives guidelines for the number of drive-in windows as a function of lobby size. These guidelines assume an average service time of approximately 2 minutes and that 50% of the bank customers will use the drive-in windows. These typical values might be used where a more detailed (and expensive) analysis is not warranted.

Ť	ABL	E 8-	3		
				÷	-

Lobby Size Versus Drive-In Window Requirements

Lobby Siżes (sq. ft.)	Number of Drive-In Windows		
5.000 to 10.000	2 to 3		
10,000 to 20,000	3 to 4		
20,000 to 30,000	4 to 5		
30,000 to 40,000	6 to 8		
40,000 to 50,000	8 to 10		

SOURCE: Peter N, Scilres [8].

Chap. 8 / Drive-In Facilities

APPLICATIONS OF QUEUEING ANALYSIS

Providing an adequate and well-defined storage area for drive-thru traffic is particularly critical, especially at fast-food restaurants and drive-thru bank facilities where queues can, and do, become quite long. Waiting vehicles should be stored on private property clear of driveways so that traffic back-up does not interfere with movement on the arterial street. At fast-food restaurants, the menu board should be installed upstream of the service window to permit drive-thru customers to place their orders prior to their arrival at the service window. Preparation of their order can then begin before they reach the service window, thus minimizing their time at the service window. A well-defined storage area for the waiting traffic should be located so that the waiting vehicles do not block or impede the movement of driveway traffic.

Where a single service position is involved, the situation is referred to as a singlechannel problem. Multiple-channel problems arise when two or more service positions are available. Such problems commonly arise with bank tellers (indoor as well as drive-in windows), entrances and exits at large parking lots and garages, at passenger pick-up areas at transit stations and taxi stands, truck terminals or loading/unloading areas, supermarket checkout counters, telephone calls, building entrances, and transit-station turnstiles. The assumptions of Poisson arrivals and negative exponential service time are commonly acceptable and used for both single- and multiple-channel problems. Thurgood [11] found these assumptions to be representative of drive-in facilities.

Customers arriving randomly at a drive-in facility may enter into service immediately or may have to enter the queue until they can be served. Waiting lines occur whenever the immediate demand for service exceeds the current capacity of the facility providing that service.

Basic Notation and Terminology

The following riotation is employed throughout this section:

- n = number of customers in the drive-in system
- M = number of customers in the queue waiting to be served (number of customers in the system minus the number being served)
- P(n) = steady-state probability that exactly *n* customers are in the queueing system
- P(0) = probability that zero vehicles are in the queueing system
 - N = number of parallel service positions
 - q = mean average arrival rate of vehicles into the system (vehicles/hour)
 - Q = mean average service rate per service position (vehicles/hour/position)
- Avg $(t) = 6\psi$ = mean service time expressed in minutes per vehicle
 - $\rho = 4/kg = \text{coefficient of utilization}$
 - E(m) = expected (average) number of customers in the system
 - E(n) = expected (average) number of customers waiting in the queue
 - E(t) = expected (average) waiting time in system (includes service time)
 - E(w) = expected (average) waiting time in queue (excludes service time)

The equations employed in the analysis of queueing problems are given in Table 8-10.

Jones, Woods, and Thurgood [4] have developed a graph (Figure 8-6) for determining the probability that there will be no customers in the system—values for P(0). They also developed graphs for determining the average number of waiting customers (Figure 8-7), the average waiting time (Figure 8-8), and average queue length (Figure 8-9). These figures avoid the necessity to perform the time-consuming, although simple, queueing-analysis calculations. See pp. 228-30.

Applications of Queueing Analysis

(8-1)

(8-2)

(8-3)

(8-4)

(8-5)

(8-8)

(8.7)

(8-8)

(8-9a)

(8-9b)*

Queueing S	o System Equations	
Equation Number	Variable	
(8-1)	Coefficient of utilization	

Coefficient of utilization	$\rho = \frac{q}{NQ}$
Probability of no customers In the system	$P(0) = \left[\sum_{n=0}^{N-1} \frac{\left(\frac{q}{Q}\right)^n}{n!} + \frac{\left(\frac{q}{Q}\right)^N}{N!(1-\rho)}\right]^{-1}$
Mean number in the queue	$E(m) = \left[\frac{\rho\left(\frac{q}{Q}\right)^{N}}{N!(1-\rho)^{2}}\right]P(0)$
Mean number in the system	$E(n) = E(m) + \frac{q}{Q} \qquad \qquad$
Mean walt time in queue (hours)	$E(w) = \frac{E(m)}{q}$
Mean time in the system (hours)	$E(t) = E(w) + \frac{1}{Q}$ $= E(w) + Avg(t)$
Proportion of customers who wait	$P[E(w) > 0] = \left[\frac{\left(\frac{q}{Q}\right)^n}{N!(1-p)}\right]P(0)$
Probability of a queue . exceeding a tength M	$P(x > M) = (\rho^{N+1})P[E(W) > 0]$
Queue storage required	$M = \left[\frac{\ln P(\mathbf{x} > M) - \ln E(w)}{\ln \rho}\right]$
Queue storage required	$M = \left[\frac{\ln P(x \ge M) - \ln Q_M}{\ln \rho}\right] -$

Equation

 Q_M is a statistic which is a function of the utilization rate and the number of service channels (service positions); see Table 8-11. The table of Q_M values and use of Equation (8-9b) greatly simplifies the calculations compared to those using Equations (8-9a).

Use of the equations and the graphs may be illustrated by the following example of

a drive-in bank.

Conditions:

Number of drive-in windows, N = 3

Demand on the system, q = 70Service capacity per channel, Q = 28.6 for an average service time, Avg (t) =2.1 minutes

Solution Using Graphs:

- Coefficient of utilization = .70/(3)(28.6) = 0.816
- e Probability that there are customers waiting in the system, Figure 8-6: P(0) = 0.05
- Expected average number of customers waiting in the queue, Figure 8-7: E(m)/N = 1.0; and the average number E(m) = (3)(1.0) = 3

-1

;1 t

1

Comparison:

Variable	Graphs	Equations	
P(0)	0.05	0.0505	
E(m)	3	2,97	
E(w)	2.5	2.55	

Example and Case Studies of Required Storage at a Drive-in Bank

Consider the following example of a drive-in bank facility as a demonstration of the use of queueing analysis. Review of a site plan for a proposed bank shows there are six drive-in window positions plus space to store 18 vehicles waiting to be served. In view of its

230

location, a 5% probability of back-up onto the adjacent street is judged to be acceptable. Demand on the system for design is expected to be 110 vehicles in a 45-minute period, Average service time was expected to be 2.2 minutes. Is the queue storage adequate?

Such problems can be quickly solved using Equation (8-9b) given in Table 8-10 and repeated below for convenience.

$$M = \left[\frac{\ln P(x > M) - \ln Q_M}{\ln \rho}\right] - 1$$

where:

M = queue length which is exceeded p percent of the time

N = number of service channels (drive-in positions)

Q = service rate per channel (vehicles per hour)

 $\frac{\text{demand rate}}{\text{convice rate}} = \frac{q}{NO} = \text{utilization factor}$

- q = demand rate on the system (vehicles per hour)
- Q_M = tabled values of the relationship between queue length, number of channels, and utilization factor (see Table 8.11)

TABLE 8-11

1able of	Q_M	values
	· · ·	

	N = I)	2)	(3	4	6	8	10
0.0	0.0000	0.0000	0.0000	0.0000			
0.1	.1000	.0182	,0037	.0008	,0000	0.0000	0.0000
.2	.2000	.0666	,0247	.0096	.0015	.0002	.0000
.3	.3000	.1385	.0700	.0370	.0111	,0036	.0011
.4	.4000	2286	(14112	,0907	.0400	.0185	.0088
.5	.5000	.3333	.2368/	.1739	.0991	.0591	.0360
.6	.6000	.4501	.3548	,2870	.1965	.1395	.1013
.7	.7000	.5766	.4923	.4286	.3359	.2706	.2218
.8	.8000	.7111	.6472	.5964	.5178	.4576	.4093
9	9000	.8526	.8172	.7878	.7401	.7014	,6687
1.0	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1,0000

arrival rate, total

(number of channels) (service rate per channel) NQ

N - number of channels (service positions)

Solution

Step 1: $Q = \frac{60 \text{ min/hr}}{2.2 \text{ min/service}} = 27.3 \text{ services per hour}$ Step 2: $q = (110 \text{ veh}/45 \text{ min}) \times (60 \text{ min/hr}) = 146.7 \text{ vehicles per hour}$ Step 3: $\rho = \frac{q}{NQ} = \frac{146.7}{(6)(27.3)} = 0.8956$ Step 4: $Q_M = 0.7303$ by interpolation between 0.8 and 0.9 for N = 6 from the

- table of Q_M values (see Table 8-11).
- The acceptable probability of the queue, M, being longer than the storage, Step 5: 18 spaces in this example, was stated to be 5%. P(x > M) = 0.05, and:

$$M = \left[\frac{\text{in } 0.05 - \text{in } 0.7303}{\text{ln } 0.8956}\right] - 1 = \left[\frac{-2.996 - (-0.314)}{-0.110}\right] - 1$$

= 24.38 - 1 = 23.38, say 23 vehicles.

Į

Chap. 8 / Drive-In Facilities

The number of vehicles in the queue would be expected to exceed 23 more than 5% of the time. Since the site plan will accommodate a queue of 18 vehicles, the storage is not sufficient for the conditions stated.

It is important to realize that, for any P(x > M) value, the queue length required increases very rapidly for values of $\rho > 0.85$ (see Figure 8-9). When $\rho > 1.0$, the solution is indeterminiate and the queue length theoretically becomes infinite.

Analysis of Service Times. In many instances it is effective to demonstrate that a proposed design not only is inadequate to store vehicles waiting for service but will result in unacceptable wait times as well. The necessary equations are given in Table 8-10.

For purposes of checking computations it is convenient to know that the limit of P(0), as the number of channels approaches infinity (in practical terms when N > 10), is:

$$\lim_{\lambda \to 0} P(0) = e^{-\lambda} \quad \text{where } \lambda = q/Q$$

Drive-In Bank Example: Under the site-development approval requirements, representatives of a bank presented a site plan for the construction of a new bank having three service positions. Information provided by bank officials and observations at other local banks provided the following data:

- Expected average arrival rate during the design hour (4:30-5:30 p.m. on Fridays) = 70 vehicles per hour (vph)
- Average service time per customer = 2.1 minutes

Does the site plan provide for sufficient storage to accommodate all vehicles arriving 95% of the time?

$$q = 70 \text{ yph arrival rate}$$

$$Q = \frac{.60 \text{ minutes per hour}}{2.1 \text{ minutes per service}} = 28.6 \text{ yph service rate}$$

$$\rho = \frac{.70}{(3)(28.6)} = 0.816$$

$$\frac{q}{Q} = \frac{.70}{.28.6} = 2.45$$

$$Q_M = 0.674 \text{ by interpolation from Table 8-11}$$

P(x > M) = 1.00 - 0.95 = 0.05

By Equation (8-9b)

$$\dot{M} = \left[\frac{\ln 0.05 - \ln 0.674}{\ln 0.816}\right] - 1 = \left[\frac{-2.996 - (-0.396)}{-0.203}\right] - 1 = 11.8, \text{ say } 12$$

Thus, it would be necessary to store 12 vehicles, exclusive of the three service positions, in order to accommodate the arriving vehicles 95% of the time; or alternatively, to have waiting vehicles extending back into the adjacent street no more than 5% of the time between 4:30 and 5:30 p.m. on Fridays. Since the site plan provides for six spaces, the site plan as submitted is inadequate and should be disapproved.

A solution to the problem would be to increase the storage, or if this is not possible add a service position in order to reduce the average service time.

Addition of a service position would reduce the number of storage spaces needed to three (three storage plus four service positions) — assuming the same arrival rate and service time:

$$M = \left[\frac{\ln 0.05 - \ln 0.301}{\ln 0.612}\right] - 1 = 2.7, \text{ say } 3$$

232

A redesign to provide four service positions would have the additional benefit of substantially reducing the expected waiting time (from over 4 minutes to less than $\frac{1}{2}$ minute) for the bank customers using the drive-in windows:

With Three Service Positions:

$$q = 70 \text{ vph}$$

$$Q = 28.6 \text{ vph}$$

$$\frac{q}{Q} = 2.45$$

$$\rho = \frac{70}{(3)(28.6)} = 0.816$$

$$P(0) = \left[\frac{(2.45)^6}{0!} + \frac{(2.45)^1}{1!} + \frac{(2.45)^2}{2!} + \frac{(2.45)^3}{3!\left[1 - \left(\frac{2.45}{3}\right)\right]}\right]^{-1}$$

$$= [1 + 2.45 + 3.00 + 13.37]^{-1} = 0.0505$$

$$E(m) = \left[\frac{(0.816)\left(\frac{70}{28.6}\right)^3}{3!(1 - 0.816)^2}\right] 0.0505 = 2.97$$

$$E(n) = 2.97 + 70.28.6 = 5.42$$

$$E(t) = \frac{2.97}{70} = 0.0424 \text{ hours or } 2.55 \text{ minutes}$$

$$E(w) = 0.0424 + \frac{1}{28.6} = 0.0774 \text{ hours or } 4.64 \text{ minutes}$$

With Four Service Positions:

$$q = 70 \text{ wph}$$

$$Q = 28.6 \text{ wph}$$

$$\frac{q}{Q} = 2.45$$

$$\rho = \frac{70}{(4)(28.6)} = 0.612$$

$$P(0) = \left[\frac{(2.45)^9}{0!} + \frac{(2.45)^1}{1!} + \frac{(2.45)^2}{2!} + \frac{(2.45)^3}{3!} + \frac{(2.45)^4}{4!}\right]$$

$$= 0.6783$$

$$E(m) = \left[\frac{(0.612)(2.45)^4}{4!(1 - 0.612)^2}\right] 0.0783 = 0.48$$

$$E(n) = 0.48 + 2.45 = 2.93$$

$$E(t) = 0.007 + \frac{1}{28.6} = 0.042 \text{ hours or } 2.51 \text{ minutes}$$

$$E(w) = \frac{0.48}{70} = 0.007 \text{ hours or } 0.41 \text{ minutes}$$

However, the service time would increase somewhat unless an additional teller were also added. Nevertheless, an increase to 2.5 minutes, or more, would still reduce the storage space required and result in better service (less time in the system). Besides, time spent being served is less irritating to the customer than an equal time spent waiting.

· 新教教室 医动脉管

i

1

DESCRIPTION:

A PORTION OF TRACT A OF "CENTRAL GOLF SECTION OF HOLLYWOOD", AS RECORDED IN PLAT BOOK 9, PAGE 44, OF THE PUBLIC RECORDS OF BROWARD COUNTY, FLORIDA, BEING DESCRIBED AS FOLLOWS:

COMMENCING AT THE NORTHEAST CORNER OF BAID TRACT 'A', RUN ON AN ASSUMED BEARING OF 5. 88° 54 12" W. ALONG THE NORTH LINE OF TRACT A GIS FEET TO THE NORTHEAST CORNER OF "SHERIDAN INDUSTRIAL PARK SOUTH "AS RECORDED IN PLAT BOOK 114, PAGE 18, OF THE PUBLIC RECORDS OF BROWARD COUNTY, FLORIDA; THENCE, S. 1° 08'48" E. PARALLEL WITH THE EAST LINE OF SAID TRACT A' AND ALONG THE EAST LINE OF SAID " SHERIDAN INDUSTRIAL PARK SOUTH " 537.17 FEET TO A POINT OF BEGINNING; THENCE, CONTINUE 6. 1° 08'48" E. 1485.83 FEET; THENCE, N. 88° 54'12" E. 161.47 FEET; THENCE, 5.1° 08'48'E. 150 FEET; THENCE, N. 88° 54'12" E. 195 FEET; THENCE, S. 6° 40'37 W. 87. 22 FEET; THENCE, S. 1º 08' 48" E. 390 FEET TO THE SOUTH LINE OF SAID TRACT 'A'; THENCE, B. 88° 39' 42" W. ALONG SAID SOUTH LINE 344. GO FEET; THENCE N. 1° 08' 48" W. 500 FEET; THENCE, S. 88° 39' 42" W. 232 FEET; THENCE, N. 1º 08' 48" W. 1614. 68 FEET; THENCE, N. 88° 54' 12" E. 232 FEET TO THE POINT OF BEGINNING.

SAID LANDS CONTAINING 12.9396 ACRES (563, 649 SQ. FT.), MORE OR LESS.

NOTES:

N 14

OP.C.P. INDICATES PERMANENT CONTROL POINT.

OP.R.M. INDICATES PERMANENT REFERENCE MONUMENT.

BENCHMARKS (B.M. ") SHOWN ARE BASED ON NATIONAL GEODETIC VERTICAL DATUM. LILL INDICATES NON-VEHICULAR INGRESS-EGRESS LINE

THIS PLAT IS RESTRICTED TO 225,500 SQ. FT. OF GENERAL INDUSTRIAL USE

U.E. INDICATES UTILITY EASEMENT

PI A

TAFT STREET INDUSTRIA A REPLAT OF A PORTION OF TRACT A "CENTRAL GOLF SECTION OF HOLLYWOOD" (9-44) S CITY OF HOLLYWOOD, BROWARD COUNTY, FLORIDA SURVEYORS « ENGINEERS BERRY, CALVIN, BROOME & FARINA A LA/KE HOLLYWOOD HEIGHTS ADDITION CANAL R/W HOLLYWOOD HEIGHTS ADDITION CENTRAL SECTION ONE (54-9) SECTION FOUR (62-30) 545' -- 1614.68 PARCEL 'A' 556,269.5 SQ.FT. 12.7702 ACRES P.R.M. PLAT LIMITS SECTION O =HOLLYWOOD 105. 1° 08 48" EI P.R.M. LAT LIMIT BROWARD COUNTY PLANNING COUNCIL: DEDI THIS IS TO CERTIFY THAT THE BROWARD COUNTY PLANNING COUNCIL APPROVED THIS PLAT WITH REGARD TO DEDICATION OF RIGHTS - OF - WAY FOR A FLOT TRAFFICWAYS BY RESOLUTION, DULY ADOPTED THIS 26H DAY OF JANUARY, 1984 DESCR PLATT Tumo NOUST 8/33/8 CHAIRMAN DEDICA BROWARD COUNTY FINANCE AND ADMINISTRATIVE SERVICES DEPARTMENT, COUNTY RECORDS DIVISION-MINUTES SECTION: HAS CA THIS IS TO CERTIFY THAT THIS PLAT COMPLIES WITH THE PROVISIONS OF SEAL / CHAPTER 177, FLORIDA STATUTES, AND WAS ACCEPTED FOR RECORD BY THE BOARD OF COMMISSIONERS OF BROWARD COUNTY, FLORIDA, THIS 5th DAY OF JUNE , 1984. WITNE ATTEST: F.T. JOHNSON COUNTY ADMINISTRATOR Deckernia AS TO BOTH STANLEY M. BECKERMAN SECRETARY e - mark BY CHAIRMAN - COUNTY COMMISSION ACKNOWLEDGEMENT: BROWARD COUNTY FINANCE AND ADMINISTRATIVE SERVICES DEPARTMENT, COUNTY RECORDS DIVISION-REGORDING SECTION: STATE OF FLODIDAS I HEREBY CERTIFY: THAT ON THIS DAY PERSONALLY COUNTY OF BROWARD ? M. BECKERMAN, EXECUTIVE VICE PRESIDENT AND SECRETARY, RESPECTIVELY OF THIS INSTRUMENT WAS FILED FOR RECORD THIS 26 DAY OF FEDERALY, 1985 AND RECORDED IN PLAT BOOK 122 AT PAGE 35, RECORD VERIFIED. FREE ACT AND DEED AS SUCH OFFICERS AND THAT THEY AFFILED THERETO THE ATTEST: F.T. JOHNSON OFFICIAL BEAL OF SAID CORPORATION, AND THAT SAID INSTRUMENT IS THE ACT AND COUNTY ADMINISTRATOR DEPUTY DEED OF SAID CORPORATION. WITNESS MY SIGNATURE AND OFFICIAL SEAL AT HOLLYWOOD, BROWARD BROWARD COUNTY ENGINEERING DIVISION: COUNTY, FLORIDA, THIS 215T DAY OF December , A.D. 1983. THIS PLAT IS APPROVED AND ACCEPTED FOR RECORD: NOTARY PUBLIC STATE OF FLORID Y COEXISSION EXP. OCI 20,1957 BONDED THRU GENERAL INS. UND. MY COMMISSION EXPIRES: 2-20-85 NOTARY PUBLIC -HENRY P COOK DATE STATE OF FLORIDA DIRECTOR OF ENGINEERING. FLA. P.E. REG. NO. 12506 SURVEYOR'S CERTIFICATE: CITY COMMISSION: THIS IS TO CERTIFY THAT THIS PLAT WAS APPROVED AND ACCEPTED BY AND CORRECT REPRESENTATION OF A RECENT SURVEY MADE UNDER MY DIRECTION. THE CITY COMMISSION OF HOLLYWOOD, FLORIDA BY RESOLUTION NO. R-84-36 ADOPTED THIS 15th DAY OF February , 1984, AND THAT BY SAID RESOLUTION THE P.R.M.'S HAVE BEEN SET WHERE INDICATED AND THE P.C.P.'S WILL BE SET ALL THOROUGFARES SHOWN ON THIS PLAT WERE ACCEPTED IN THE NAME OF SAID WITHIN ONE YEAR AFTER THE RECORDING OF THIS PLAT. CITY AND ALL PREVIOUS PLATS OF THIS LAND ARE CANCELLED AND SUPERCEDED. ALL SURVEY INFORMATION SHOWN ON THIS PLAT MEETS THE MINIMUM TECHNICAL STANDARDS SET FORTH IN RULE 21HH-16, ADOPTED BY THE FLORIDA BOARD OF LAND SURVEYORS PURSUANT TO FLORIDA STATUTES CHAPTER 472.027. APPROVED CITY CLERK BENCHMARKS ARE SET IN CONFORMITY WITH 3 PORDER ACCURACY. DATED AT HOLLYWOOD, BROWARD COUNTY, FLORIDA THIS 200 DAY OF M. Benjac APRIL , 1984. APPROVED : CITY ENGINEER N Janvice EB MAURICE E. BERRY II REGISTERED LAND SURVEYOR NO. 1122 STATE OF FLORIDA

LPARK		j.
BEC. B, TWP. 51 SOUTH, RGE. 42 EAST		
1" = 100' 1050'		
ADLLYWOOD, FLORIDA		
GOLF SECTION OF HOLLYWOOD (9-44)		
PLAT LIMITS		22
HOW PRD OD HERIDAN INDUSTRIAL HOW PRD OD HERIDAN INDUSTRIAL PARK SOUTH (114-10) NE. Corner "SHEE PARK SOUTH (114-10) PR.M. (P.O.B) S. 1° 08' 48' E. 537. 17'	210AN 4-18)	INDUSTRIAL
(9-44)	S 88	U T
	UT	m ·
CATION: KNOW ALL MEN BY THESE PRESENTS: THAT HOLLY WOOD LAND CO., INC., 21DA CORPORATION, IS THE OWNER IN FEE SIMPLE OF THE LANDS SHOWN AND LIBED HEREON AND HAS CAUSED THE SAID LANDS TO BE SUBDIVIDED AND ED IN THE MANNER SHOWN HEREON AND TO BE KNOWN AS "TAFT STREET "RIAL PARK", A REPLAT.	12. W	DAN
ALL THOROUGHFARES AND EASEMENTS SHOWN ON THIS PLAT ARE HEREBY	615	ST
IN WITNESS WHEREOF HOLLYWOOD LAND CO., INC., A FLORIDA CORPORATION, AUSED THESE PRESENTS TO BE SIGNED BY ITS OFFICERS AND THE CORPORATE AFFIXED THERETO THIS 21ST DAY OF December A.D., 1983.	07	CHE CORNER
AS TO BOTH BERNARD T. BUDD	LE CDR	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
EXECUTIVE VICE PRESIDENT	- 27	n o

PLAT BOOK 122 PAGE 25

APPEARED BEFORE ME BERNARD T. BUDD AND STANLEY HOLLYWOOD LAND CO., INC., A FLORIDA CORPORATION, TO ME WELL KNOWN TO BETHE PERSONS DESCRIBED IN AND WHO EXECUTED THE FOREGOING PLAT AND INSTRUMENT OF DEDICATION AND SEVERALLY ACKNOWLEDGED THE EXECUTION THEREOF TO BE THEIR

I, MAURICE E. BERRY II, HEREBY CERTIFY THAT THIS PLAT COMPLIES WITH ALL OF THE REQUIREMENTS OF CHAPTER 177, FLORIDA STATUTES, AND THAT IT IS A TRUE

DRAINAGE REPORT

Safeguard Storage 3090 Sherman Street Hollywood, FL 33021

This item has been digitally signed and sealed by Robert J. Ross, P.E. on the date adjacent to the seal. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

> Prepared by: Ross Engineering, Inc.

Main Office: 954.318.0624

Fax: 954.358.0190 Web: www.rossengineers.com

A. Executive Summary

The scope of Safeguard Storage Sheridan includes an additional building within the property. In order for this to be performed an existing retention area and parking spaces in the center of the property will be removed for the new storage building. After further drainage analysis Ross Engineering was able to identify the existing flood conditions using Cascade 2001. The existing conditions of this site does not provide proper drainage to prevent flooding issues. The existing property does not meet Broward County's updated criteria as of 2017 or does it meet the previously used Water Table values. The existing site is over designed for water quality by exfiltration trench, for the property's 100yr-3day storm event stage to decrease additional water quality and storage is provided in new dry retention area, and underground raintank.

B. PROPERTY DESCRIPTION

The subject property is located at 3090 Sherman Street, Hollywood, 33021. The scope of this project includes the existing site, and the central retention area. Based on as-builts received from Broward County and existing survey there is an existing drainage system present.

All elevations presented are in North American Vertical Datum, 1988 (NAVD).

C. HYDROLOGY

The following storm events for both existing and proposed conditions were considered:

- 5-Year, 24-Hour
- 10-Year, 24-Hour
- 25-Year, 72-Hour
- 100-Year, 72-Hour

D. WATER QUANTITY ANALYSIS

Water Control Elevation:

The permitted plans used an assumed Water Table of 2.0 feet, NGVD, which translates to 0.4 NAVD (Existing Criteria). Broward County's water table has changed in 2017 to 1.50 NAVD.

Wet Season Water Table (Control) = **1.50 NAVD**

(refer to Appendix A)

Design Storm Rainfall Data: Water Quantity

5-Year, 24-Hour = 7.50 Inches (*See Appendix "A" Rainfall Maps) 10-Year, 24-Hour = 9.00 Inches (*See Appendix "A" Rainfall Maps) 25-Year, 72-Hour = 13.50 Inches (*See Appendix "A" Rainfall Maps) 100-Year, 72-Hour = 17.00 Inches (*See Appendix "A" Rainfall Maps)

Main Office: 954.318.0624 Fax: 954.358.0190

Web: www.rossengineers.com

Land Use Breakdown (Pre-Development)							
Land Use	Area			Grade			
	sf	ас	%	Low	High	Average	Wtd. Avg.
Impervious Areas	152,853	3.509	66.8%			5.89	3.93
Building	67,850	1.558	29.7%	6.40	> <	6.40	1.90
Pond	5,435	0.125	2.4%	-0.02	>	-0.02	0.00
Asphalt Road/Other Impervious	74,060	1.700	32.4%	4.35	7.26	5.81	1.88
Concrete Parking	5,508	0.126	2.4%	6.41	6.57	6.49	0.16
Pervious Areas	75,859	1.741	33.2%			4.15	1.38
Retention Pond Top of Bank (L)	4,851	0.111	2.1%	-0.02	5.80	2.89	0.06
Retention 2 (V)	137	0.003	0.1%	1.68	>	1.68	0.00
Retention 2 (L)	1,141	0.026	0.5%	1.68	6.05	3.87	0.02
Retention 3 (V)	3,584	0.082	1.6%	0.68	>	0.68	0.01
Retention 3 (L)	6,605	0.152	2.9%	0.72	7.12	3.92	0.11
Green	59,541	1.367	26.0%	2.50	6.50	4.50	1.17
Total	228,712	5.2505	100.0%			5.31	5.31

Table 1: Land Use Breakdown (Existing)

Table 2: Land Use Breakdown (Future)

Land Use Breakdown (Post-Development)							
Land Use		Area		Grade			
	sf	ас	%	Low	High	Average	Wtd. Avg.
Impervious Areas	150,382	3.452	65.8%			6.21	4.08
Existing Buildings to Remain	58,450	1.342	25.6%	6.95	$>\!$	6.95	1.78
Exist. Asphalt Road/Other Impervio	61,437	1.410	26.9%	4.43	6.40	5.42	1.45
Proposed Building	30,495	0.700	13.3%	6.40	>	6.40	0.85
Pervious Areas	78,330	1.798	34.2%			3.89	1.33
Proposed Retention 1 (V)	17,631	0.405	7.7%	2.50	\geq	2.50	0.19
Proposed Retention 1(L)	5,768	0.132	2.5%	2.50	5.00	3.75	0.09
Green	54,932	1.26	24.0%	2.50	6.20	4.35	1.04
Total Site	228,712	5.25051	100.0%			5.42	5.42

Table 3: SCS Runoff Calculations

Runoff & Max Stage (Post-Development)					
SCS Equation Rainfall (P)		P Excess (Pe)	Runoff (Q)		
Storm Event	Taken from	Pe = <u>(P-0.2S)²</u>	Q=Pe x A x <u>1ft</u>		
Storm Event	SFWMD Maps	(P+0.8S)	12in		
5 yr 1 hr	3.28 in	2.29 in	1.000 ac-ft		

Area (A) = 5.25 ac

Main Office: 954.318.0624

Web: www.rossengineers.com

Fax: 954.358.0190

Table 4: Soil Storage & CN: Calculations

Soil Storage (Pre-Development)	
Average Finished Grade (NAVD)	4.15 ft
Average Water Table (NAVD)	1.50 ft
Depth to Water Table	2.65 ft = (4.15 ft) - (1.5 ft)
Soil Storage SFWMD (S*)	3.88 in
%Total Pervious Area (%A _P)	33.2%
Site Specific Soil Storage (S)	1.29 in = (S*) x (%Ap)
Curve Number (CN)	89 = 1000 / (10 + S)

S* = Soil Storage (SFWMD Table)

Table 5: Soil Storage & CN: Calculations (Future)

Soil Storage (Post-Development)	
Average Finished Grade	3.89 ft NAVD
Average Water Table	1.50 ft NAVD
Depth to Water Table	2.39 ft = (3.89 ft) - (1.5 ft)
Soil Storage SFWMD (S*)	3.08 in
%Total Pervious Area (%A _P)	34.2%
Site Specific Soil Storage (S)	1.05 in = (S*) x (%Ap)
Curve Number (CN)	90 = 1000 / (10 + S)

S* = Soil Storage (SFWMD Table)

~ '		
Water Quality Calculations	(Pre)	(Post)
Compute First in. of Runoff times Site Area	5.251 ac-in	5.251 ac-in
	0.438 ac-ft	0.438 ac-ft
Compute % of Imperviousness times depth:	3.28 in	3.28 in
Site Area for WQ perv/imperv calc only	3.57 ac	3.91 ac
Imperv Area for WQ perv/imperv calc only	1.83 ac	2.11 ac
% of Imperviousness for WQ	51.2%	54.0%
Depth times % Imperv = Depth to be treated	1.68 in	1.77 in
Volume required for WQ treatment	8.607 ac-in	9.299 ac-in
	0.717 ac-ft	0.775 ac-ft
The greater of 1st in. of runoff or % imp. X depth	8.607 ac-in	9.299 ac-in
controls & is the volume to be treated for WQ	0.717 ac-ft	0.775 ac-ft

Table 6: Water Quality – Pre and Post

WQ Volume Treated in Exfil Trench	8.607 ac-in	10.605 ac-in
WQ Volume Treated in Lake	0.000 ac-in	2.353 ac-in
WQ Volume Treated in Dry Retention	0.000 ac-in	3.234 ac-in
Total WQ Volume Treated	8.607 ac-in	16.192 ac-in

The entirety of the site's water quality is taken care of in the existing over designed exfiltration trench, we have provided additional water quality measures in dry retention. This was done to lower our 100yr-3day flood stage below the existing building's FFE.

Main Office: 954.318.0624

Fax: 954.358.0190

Web: www.rossengineers.com

Exfiltration Tren	hch Calcs (Pre-Development)	Exfiltration Tren	nch Calcs (Post-Development)		
Ds>Du	False	Check	for Governing Equation		
W>2(Ds+Du)	False	Ds>Du	False		
Use Standard Ed	quation unless either statement	W>2(Ds+Du)	False		
is True. If True,	then use Conservative Equation.	Use Standard Ed	quation unless either statement		
S	standard Equation	is True. If True,	then use Conservative Equation.		
L=FS[%WQ(Vwq)+Vadd]	9	Standard Equation		
K[H2W+2H2D	u-Du2+2H2Ds]+1.39x10-4(WDu)	L=FS[%WQ(Vwq	L=FS[%WQ(Vwq)+Vadd]		
V _{wq}	8.607 ac-in	K[H2W+2H2Du-Du2+2H2Ds]+1.39x10-4(WD			
FS	2	V _{wq}	9.299 ac-in		
%WQ	50%	FS	2		
V _{add}		%WQ	50%		
W	6 ft	W	6 ft		
К	3.35E-04 CFS/SF-ft head	К	3.35E-04 CFS/SF-ft head		
H ₂	4.50 ft	H ₂	4.50 ft		
D _u	3.00 ft	D _u	3.00 ft		
Ds	1.00 ft	Ds	1.00 ft		
L	417.97 ft	L	451.57 ft		

Reverse Trench Calcs (Post-Development)						
Check	for Governing Equation					
Ds>Du	False					
W>2(Ds+Du)	False					
Use Standard Ed	quation unless either statement					
is True. If True, t	then use Conservative Equation.					
Reve	rse Standard Equation					
$V = L{K[H2W+2]}$	H2Du-Du2+2H2Ds]+1.39x10-4(W					
*V = FS[%WQ(Vv	*V = FS[%WQ(Vwq)+Vadd]					
L	515.00 ft					
W	6 ft					
К	3.35E-04 CFS/SF-ft head					
H ₂	4.50 ft					
D _u	3.00 ft					
Ds	1.00 ft					
*V	10.605 ac-in					
*V	0.8837 ac-ft					
FS	2					
%WQ	50%					

Main Office: 954.318.0624 Fax:

Fax: 954.358.0190 Web: www

Web: www.rossengineers.com

Table 10: Exfiltration Trench Calcs – Existing

Table 11: Exfiltration Trench Calcs – Existing Trench to Remain

Main Office: 954.318.0624 Fax: 954.358.0190

Web: www.rossengineers.com

Table 12: R-Tank Stage Storage Table

	R-TANK SUBSURFACE STORAGE SYSTEM							
	R-TANK STAGE-STORAGE TABLE							
	R-Tar	ak Modula Siza	HD Double			Flevations		
	N-Tank Module Size				Base Inv	ert Flevation	1 25	
	w	/idth of R-Tank	15.75 in		R-Tank Inv	ert Elevation	1.50	
	Le	ngth of R-Tank	28.15 in		Т	op of R-Tank	4.32	
	Н	eight of R-Tank	33.86 in		Top of Cover		5.32	
	Stor	age per R-Tank	8.25 cf	HS-2	0 Minimum Co	ver Elevation	5.99	
		-8			Maximum Co	ver Elevation	11.31	
	Total Num	ber of R-Tanks	4,450		Stage Storag	ge Increment	0.25	
	u	Init Void Space	95%					
		Base Thickness	3 in			Dead Storage		
	0	over Thickness	12 in		Dead Stor	age Required	No	
	R-	Tank Footprint	13,701.14 sq	.ft.		-8		
	Excava	ation Footprint	15.019.00 so	uft.				
			,			Stone Storage		
Total Vo	lume Provided	in R-Tank Only	36.705 cf		Use S	tone Storage	Yes	
То	tal Volume Pro	wided in Stone	8.996 cf		Use Stone Bas	e for Storage	Yes	
		Dead Storage	0 cf		Use Stone Cove	r for Storage	Yes	
1	Total System St	torage Volume	45.701 cf		Stor	ne Void Ratio	40%	
		oruge rotatile	45,702 01		0.01			
Elevation	Volume							
1.25	0.00							
1.50	1,501.90							
1.75	4,887.71							
2.00	8,273.51							
2.25	11,659.32							
2.50	15,045.13							
2.75	18,430.93							
3.00	21,816.74							
3.25	25,202.55							
3.50	28,588.35							
3.75	31,974.16							
4.00	35,359.97							
4.25	38,745.77							
4.50	40,775.17							
4.75	42,277.07							
5.00	43,778.97							
5.25	45,280.87							
5.32	45,701.40							
	K					#FERG	USON TERWORKS	

(Note: Volume values in table above are in cubic feet (ft^3) and have been converted into ac-ft below in Table 12)

Main Office: 954.318.0624 Fax: 954.358.0190

Web: www.rossengineers.com

Stage Storage (Pre-Development)											
		Asphalt									
		Road/Other	Concrete	Retention Pond	Retention 2	Retention 2	Retention 3	Retention 3			Total
	Pond	Impervious	Parking	Top of Bank (L)	(∨)	(L)	(∨)	(L)	Green	Trench 1	
Area (AC)	0.12	1.70	0.13	0.11	0.00	0.03	0.08	0.15	1.37	n/a	3.69
Low Elev	-0.02	4.35	6.41	-0.02	1.68	1.68	0.68	0.72	2.50	0.50	
High Elev		7.26	6.57	5.80	6.05	6.05	7.12	7.12	6.50	4.50	
Stage	Linear	Linear	Linear	Linear	Vertical	Linear	Vertical	Linear	Linear	on	Total
Feet	Storage	Storage	Storage	Storage	Storage	Storage	Storage	Storage	Storage	Storage	Storage
NAVD	ac-ft	ac-ft	ac-ft	ac-ft	ac-ft	ac-ft	ac-ft	ac-ft	ac-ft	ac-ft	ac-ft
1.50	0.19	0.00	0.00	0.01	0.00	0.00	0.07	0.00	0.00	0.00	0.26
2.00	0.25	0.00	0.00	0.01	0.00	0.00	0.11	0.00	0.00	1.82	2.20
2.50	0.31	0.00	0.00	0.03	0.00	0.00	0.15	0.01	0.00	2.42	2.93
3.00	0.38	0.00	0.00	0.05	0.00	0.00	0.19	0.02	0.01	3.03	3.67
3.50	0.44	0.00	0.00	0.07	0.01	0.00	0.23	0.04	0.04	3.63	4.47
4.00	0.50	0.00	0.00	0.11	0.01	0.01	0.27	0.07	0.14	4.24	5.35
4.50	0.56	0.00	0.00	0.15	0.01	0.02	0.31	0.10	0.34	4.85	6.34
5.00	0.63	0.03	0.00	0.21	0.01	0.03	0.36	0.15	0.67	4.85	6.91
5.50	0.69	0.15	0.00	0.28	0.01	0.04	0.40	0.20	1.15	4.85	7.77
6.00	0.75	0.45	0.00	0.35	0.01	0.06	0.44	0.27	1.83	4.85	9.00
6.50	0.81	1.00	0.00	0.40	0.02	0.07	0.48	0.36	2.73	4.85	10.72
7.00	0.88	1.87	0.06	0.46	0.02	0.08	0.52	0.46	3.42	4.85	12.61
7.50	0.94	2.88	0.13	0.51	0.02	0.10	0.56	0.54	4.10	4.85	14.63

Table 13: Stage Storage – Existing Conditions

Table 1	4:	Stage	Storage	- Proposed	Conditions
---------	----	-------	---------	------------	-------------------

stage Storage (Post-Development)								
	Exist.							
	Asphalt		Proposed					Total
	Road/Other	Proposed	Retention 1	Proposed				Total
	Impervious	Building	(∨)	Retention 1(L)	Raintank 1	Green	Trench 1	
Area (AC)	1.41	0.70	0.40	0.13		1.26	n/a	3.91
Low Elev	4.43	6.40	2.50	2.50	1.50	2.50	0.50	
High Elev	6.40		5.00	5.00	5.00	6.20	4.50	
Feet	Storage	Storage	Storage	Storage	Storage	Storage	Storage	Storage
NAVD	ac-ft	ac-ft	ac-ft	ac-ft	ac-ft	ac-ft	ac-ft	ac-ft
2.50	0.00	0.00	0.00	0.00	0.18993365	0.00	0.38745	0.58
3.00	0.00	0.00	0.20	0.00	0.34538866	0.01	0.48431	1.04
3.50	0.00	0.00	0.40	0.01	0.50084343	0.05	0.58117	1.54
4.00	0.00	0.00	0.61	0.04	0.6562982	0.16	0.67803	2.13
4.50	0.00	0.00	0.81	0.08	0.81175321	0.37	0.77489	2.85
5.00	0.03	0.00	1.01	0.17	0.93606909	0.72	0.77489	3.64
5.50	0.22	0.00	1.21	0.23	1.00502685	1.24	0.77489	4.69
6.00	0.70	0.00	1.42	0.30	1.04916023	1.97	0.77489	6.22
6.50	1.53	0.00	1.62	0.36	1.04916023	2.71	0.77489	8.05
7.00	2.24	0.00	1.82	0.43	1.04916023	3.34	0.77489	9.65
7.50	2.94	0.00	2.02	0.50	1.04916023	3.97	0.77489	11.26

E. FLOOD ROUTING RESULTS

All flood routing result scenarios can be found in "Appendix B-F" for the 5 year - 24-hour, 10 year - 24-hour, 25 year-72 hour and 100 year - 72-hour storm events.

5-Year, 24-Hour = 7.50 Inches 10-Year, 24-Hour = 9.00 Inches 25-Year, 72-Hour = 13.50 Inches 100-Year, 72-Hour = 17.00 Inches

Table 15: Max Stage Design Criteria (ft)

Storm Events	Proposed Development		
100yr 3day	6.18 ft	Exist. Building FFE=6.40 ft	\checkmark
25yr 3day	5.72 ft	N/A	V
10yr. – 1day	4.70 ft	Existing Crown of Road = 6.00 ft	V
5yr1day	4.28 ft	Lowest Storm Rim in Asphalt = 5.35 ft	V

F. Flood Protection RESULTS

FEMA Flood Zone	Flood Zone X
100- yr Flood BC 2060	7.50 ft
Design 100yr 3-day	6.18 ft

Building will have flood protection up to 7.50 ft from 6.95 ft, since

building is a commercial storage facility and uninhabitable.

<u> Proposed FFE = 6.95 ft NAVD > ALL OF THE ABOVE</u>

APPENDIX A

Water Table Map Rainfall Maps Flood Maps

Future Conditions Average Wet Season Groundwater Elevation Map

This map is for planning purposes and should not be used for legal boundary determinations.
Groundwater Elevation

The higher of 1.50 feet NAVD 88 or local control elevation (as defined by governing drainage district).

€ Zoom to

Q IS MAR

Sharidan Flazz

Danta Beach

AlgeoGreenbelt

 \square \times

2

ann (

C BALL

West Lake Park

Anna Kolb Nature Center

Holland Park

mil. -唐

Fort Everylader-Southport

Smile Arealis

Hollywood Receivation

Hollywood Memorial Gardens

FIGURE C-3. 1-DAY RAINFALL: 5-YEAR RETURN PERIOD

Future Conditions 100-Year Flood Map 2060

https://bcgis.maps.arcgis.com/apps/webappviewer/index.html?id=ec160b81e7f84bdeacda62575e817380

APPENDIX B

Cascade Existing Conditions

Basin 1: Safeguard Self Storage

Method: Santa Barbara Unit Hydrograph Rainfall Distribution: SFWMD - 24 hr Design Frequency: 5 year 1 Day Rainfall: 7.5 inches Area: 5.2505 acres Ground Storage: 1.29 inches Time of Concentration: 0.5 hours Initial Stage: 1.5 ft NGVD

Stage	Storage
(ft NGVD)	(acre-ft)
1.50	0.26
2.00	1.02
2.50	1.36
3.00	1.72
3.50	2.12
4.00	2.61
4.50	3.21
5.00	3.78
5.50	4.64
6.00	5.87
6.50	7.59
7.00	9.48
7.50	11.50

STRUCTURE MAXIMUM AND MINIMUM DISCHARGES

=========	===========		================	============
Struc	Max (cfs)	Time (hr)	Min (cfs)	Time (hr)
==========			================	===========

BASIN MAXIMUM AND MINIMUM STAGES

==============		====	=======	=====	========	====	=======	=====	====
E	Basin	Max	(ft)	Time	(hr)	Min	(ft)	Time	(hr)
============		====	======	=====		=====	=======	======	====
Safeguard	Self		4.27	2	24.00		1.50		0.00

						===================
	Final	Initial	Structure	Structure	Total	
Residual	Storage	Storage	Outflow	Inflow	Runoff	Basin
0.00	2.93	0.26	0.00	0.00	2.67	Safeguard Self

Basin 1: Safeguard Self Storage

Method: Santa Barbara Unit Hydrograph Rainfall Distribution: SFWMD - 24 hr Design Frequency: 10 year 1 Day Rainfall: 9 inches Area: 5.2505 acres Ground Storage: 1.29 inches Time of Concentration: 0.5 hours Initial Stage: 1.5 ft NGVD

Stage	Storage
(ft NGVD)	(acre-ft)
1.50	0.26
2.00	1.02
2.50	1.36
3.00	1.72
3.50	2.12
4.00	2.61
4.50	3.21
5.00	3.78
5.50	4.64
6.00	5.87
6.50	7.59
7.00	9.48
7.50	11.50

STRUCTURE MAXIMUM AND MINIMUM DISCHARGES

==========	=====	======		====		
Struc	Max	(cfs)	Time	(hr)	Min (cfs) Time (hr)
==========	====	=====		====		================

BASIN MAXIMUM AND MINIMUM STAGES

==============		====	======		=========	====	=======	=====	====
E	Basin	Max	(ft)	Time	(hr)	Min	(ft)	Time	(hr)
============		====				====	=======		====
Safeguard	Self		4.81	2	24.00		1.50		0.00

	==========		=======================================			
Basin	Total Runoff	Structure Inflow	Structure Outflow	Initial Storage	Final Storage	Residual
Safeguard Self	:=====================================	.00.00	0.00	======================================	======================================	======== 0.00

Basin 1: Safeguard Self Storage

Method: Santa Barbara Unit Hydrograph Rainfall Distribution: SFWMD - 3day Design Frequency: 25 year 3 Day Rainfall: 13.5 inches Area: 5.2505 acres Ground Storage: 1.29 inches Time of Concentration: 0.5 hours Initial Stage: 1.5 ft NGVD

Stage	Storage
(ft NGVD)	(acre-ft)
1.50	0.26
2.00	1.02
2.50	1.36
3.00	1.72
3.50	2.12
4.00	2.61
4.50	3.21
5.00	3.78
5.50	4.64
6.00	5.87
6.50	7.59
7.00	9.48
7.50	11.50

STRUCTURE MAXIMUM AND MINIMUM DISCHARGES

=========	=====	======		====	======	=====	=======	====
Struc	Max	(cfs)	Time	(hr)	Min	(cfs)	Time	(hr)
==========	=====	======	=======	====	======	=====	=======	====

BASIN MAXIMUM AND MINIMUM STAGES

==============		====	======	====:	=========	====	=======	=====	====
E	Basin	Max	(ft)	Time	(hr)	Min	(ft)	Time	(hr)
============		====	=======	====:		=====	=======	=====	====
Safeguard	Self		5.85		72.00		1.50		0.00

		=============				=======================================
Desidual	Final	Initial	Structure	Structure	Total	Deede
Residual	storage	Storage	OUTIIOW	INIIOW	RUNOII	Basin
0.00	5.51	0.26	0.00	0.00	5.25	Safeguard Self

Basin 1: Safeguard Self Storage

Method: Santa Barbara Unit Hydrograph Rainfall Distribution: SFWMD - 3day Design Frequency: 100 year 3 Day Rainfall: 17 inches Area: 5.2505 acres Ground Storage: 1.29 inches Time of Concentration: 0.5 hours Initial Stage: 1.5 ft NGVD

Stage	Storage
(ft NGVD)	(acre-ft)
1.50	0.26
2.00	1.02
2.50	1.36
3.00	1.72
3.50	2.12
4.00	2.61
4.50	3.21
5.00	3.78
5.50	4.64
6.00	5.87
6.50	7.59
7.00	9.48
7.50	11.50

STRUCTURE MAXIMUM AND MINIMUM DISCHARGES

==========	=====	======		====		
Struc	Max	(cfs)	Time	(hr)	Min (cfs) Time (hr)
==========	====	=====		====		================

BASIN MAXIMUM AND MINIMUM STAGES

==============	========	====	======	=====	========	====	=======	=====	====
E	Basin	Max	(ft)	Time	(hr)	Min	(ft)	Time	(hr)
		====	=======			=====	=======		====
Safeguard	Self		6.34	7	2.00		1.50		0.00

=======================================	===========					
Basin	Total Runoff	Structure Inflow	Structure Outflow	Initial Storage	Final Storage	Residual
Safeguard Self	6.77	0.00	0.00	0.26	7.03	0.00

3325 S. University Drive, Suite 111, Davie, FL 33328

Main Office: 954.318.0624

Fax: 954.358.0190 Web: <u>www.rossengineers.com</u>

APPENDIX C

Cascade Proposed Development

Basin 1: Safeguard Self Storage

Method: Santa Barbara Unit Hydrograph Rainfall Distribution: SFWMD - 24 hr Design Frequency: 5 year 1 Day Rainfall: 7.5 inches Area: 5.2505 acres Ground Storage: 1.05 inches Time of Concentration: 0.5 hours Initial Stage: 1.5 ft NGVD

Stage	Storage
(ft NGVD)	(acre-ft)
1.50	0.00
2.00	0.33
2.50	0.58
3.00	1.04
3.50	1.54
4.00	2.13
4.50	2.85
5.00	3.64
5.50	4.69
6.00	6.22
6.50	8.05
7.00	9.65
7.50	11.26

STRUCTURE MAXIMUM AND MINIMUM DISCHARGES

=========	=====	======		====	======	=====	=======	====
Struc	Max	(cfs)	Time	(hr)	Min	(cfs)	Time	(hr)
==========	=====	======	=======	====	======	=====	=======	====

BASIN MAXIMUM AND MINIMUM STAGES

==============		====	=======	=====	=========	====	=======		====
E	Basin	Max	(ft)	Time	(hr)	Min	(ft)	Time	(hr)
============		====	=======	=====	=========	=====	=======		====
Safeguard	Self		4.46		29.40		1.50		0.00

	Total	Structure	Structure	Initial	Final	
Basii	n Runoff	Intlow	Outilow	Storage	Storage	Residual
Safeguard Sel:	E 2.79	0.00	0.00	0.00	2.79	0.00

Basin 1: Safeguard Self Storage

Method: Santa Barbara Unit Hydrograph Rainfall Distribution: SFWMD - 24 hr Design Frequency: 10 year 1 Day Rainfall: 9 inches Area: 5.2505 acres Ground Storage: 1.05 inches Time of Concentration: 0.5 hours Initial Stage: 1.5 ft NGVD

Stage	Storage
(ft NGVD)	(acre-ft)
1.50	0.00
2.00	0.33
2.50	0.58
3.00	1.04
3.50	1.54
4.00	2.13
4.50	2.85
5.00	3.64
5.50	4.69
6.00	6.22
6.50	8.05
7.00	9.65
7.50	11.26

STRUCTURE MAXIMUM AND MINIMUM DISCHARGES

=========	=====	======		====	======	=====	=======	====
Struc	Max	(cfs)	Time	(hr)	Min	(cfs)	Time	(hr)
==========	=====	======	=======	====	======	=====	=======	====

BASIN MAXIMUM AND MINIMUM STAGES

==============		====	=======	====:	=========	====	======	=====	====
E	Basin	Max	(ft)	Time	(hr)	Min	(ft)	Time	(hr)
============		====	=======	=====	========	=====	======	======	====
Safeguard	Self		4.87		29.60		1.50		0.00

=======================================				============		
	Total	Structure	Structure	Initial	Final	
Basin	Runoff	Inflow	Outflow	Storage	Storage	Residual
Safeguard Self	3.43	0.00	0.00	0.00	3.43	0.00

Basin 1: Safeguard Self Storage

Method: Santa Barbara Unit Hydrograph Rainfall Distribution: SFWMD - 3day Design Frequency: 25 year 3 Day Rainfall: 13.5 inches Area: 5.2505 acres Ground Storage: 1.05 inches Time of Concentration: 0.5 hours Initial Stage: 1.5 ft NGVD

Stage	Storage
(ft NGVD)	(acre-ft)
1.50	0.00
2.00	0.33
2.50	0.58
3.00	1.04
3.50	1.54
4.00	2.13
4.50	2.85
5.00	3.64
5.50	4.69
6.00	6.22
6.50	8.05
7.00	9.65
7.50	11.26

STRUCTURE MAXIMUM AND MINIMUM DISCHARGES

==========	=====	======	========	====		
Struc	Max	(cfs)	Time	(hr)	Min (cfs) Time (hr)
==========	====	=====	=======	====		

BASIN MAXIMUM AND MINIMUM STAGES

==============		====	======	=====	=========	====	=======	=====	====
E	Basin	Max	(ft)	Time	(hr)	Min	(ft)	Time	(hr)
============		====	======	=====			=======		====
Safeguard	Self		5.72	-	72.00		1.50		0.00

=======================================						
Basin	Total Runoff	Structure Inflow	Structure Outflow	Initial Storage	Final Storage	Residual
Safeguard Self	======================================	.00	·=====================================	======================================	======== 5.36	======== 0.00

Basin 1: Safeguard Self Storage

Method: Santa Barbara Unit Hydrograph Rainfall Distribution: SFWMD - 3day Design Frequency: 100 year 3 Day Rainfall: 17 inches Area: 5.2505 acres Ground Storage: 1.05 inches Time of Concentration: 0.5 hours Initial Stage: 1.5 ft NGVD

Stage	Storage
(ft NGVD)	(acre-ft)
1.50	0.00
2.00	0.33
2.50	0.58
3.00	1.04
3.50	1.54
4.00	2.13
4.50	2.85
5.00	3.64
5.50	4.69
6.00	6.22
6.50	8.05
7.00	9.65
7.50	11.26

STRUCTURE MAXIMUM AND MINIMUM DISCHARGES

=========	=====	======		====	======	=====	=======	====
Struc	Max	(cfs)	Time	(hr)	Min	(cfs)	Time	(hr)
==========	=====	======	=======	====	======	=====	=======	====

BASIN MAXIMUM AND MINIMUM STAGES

=============		====	=======	=====	========	====	=======	=====	====
E	Basin	Max	(ft)	Time	(hr)	Min	(ft)	Time	(hr)
============		====	======	=====		=====	=======		====
Safeguard	Self		6.18	5	72.00		1.50		0.00

=======================================						
Basi	Total n Runoff	Structure Inflow	Structure Outflow	Initial Storage	Final Storage	Residual
Safeguard Se	f 6.88	 0.00	 0.00	·=====================================	 6.88	.00 .00

3325 S. University Drive, Suite 111, Davie, FL 33328

Main Office: 954.318.0624

Fax: 954.358.0190 Web: <u>www.rossengineers.com</u>

APPENDIX D

Geotechnical Report

UNIVERSAL ENGINEERING SCIENCES

Florida's Leading Engineering Source

Geotechnical Exploration Report

3090 SHERIDAN STREET Hollywood, Florida

May 12, 2022 UES Project No.: 0630.2200058.0000

Prepared for: Mike Carter Construction, Inc.

A Universal Engineering Sciences Company

OFFICES THROUGHOUT FLORIDA 1215 Wallace Drive • Delray Beach, Florida 33444 • (561) 347-0070 • (561) 395-5805 (fax) • <u>www.universalengineering.com</u>

Atlanta, GA Buford, GA Chantilly, VA Charlotte, NC Clewiston, FL Daytona, FL Delray Beach, FL Douglasville, GA Fort Myers, FL Fort Pierce, FL Gainesville, FL LOCATIONS Hagerstown, MD Irvine, CA Jacksonville, FL Kennesaw, GA Las Vegas, NV Miami, FL Ocala, FL Orlando, FL Palm Coast, FL Panama City, FL Pelham, AL

Pensacola, FL Port St. Lucie, FL Reno, NV Rockledge, FL Sarasota, FL St. Petersburg, FL Tampa, FL Tifton, GA West Palm Beach, FL

May 12, 2022

Geotechnical Engineering | Construction Materials Testing and Inspections Building Code Compliance | Environmental, Health & Safety | Facilities Consulting

> Mike Adams **Mike Carter Construction, Inc.** 435 12th Street West Bradenton, FL 34205 Phone: 941-745-1700 Email: KristiKramer@MCCONST.com

RE: Geotechnical Exploration 3090 Sheridan Street Hollywood, FL 33201 UES Project No.: 0630.2200058.0000

Dear Mr. Adams:

In accordance with your authorization, Universal Engineering Sciences (UES) has completed the subsurface exploration and geotechnical engineering evaluation for the above referenced project in accordance with the signed geotechnical and engineering service agreement for this project. The scope of UES's services was planned in conjunction with and authorized by you.

The purpose of UES's subsurface exploration was to classify the nature of the subsurface soils and general geomorphic conditions and to evaluate their impact upon the proposed construction. This report contains the results and UES's engineering interpretation of subsurface conditions of the site with respect to the project characteristics as described to UES including recommendations for foundation design, hydrogeological conditions, and site preparation procedures.

EXECUTIVE SUMMARY

The subject property is located at 3090 Sheridan Street in Hollywood, Florida. It is UES's understanding that this project is to consist of the construction of a 3-story CMU building approximately ±34,135 ft². A preliminary design site plan prepared by Studio x2 Architects, PA, dated February 8, 2022, was provided by the client. The site is occupied by multiple commercial buildings and associated paved parking lots that are to be demolished for the proposed construction.

Structural details were provided by the client. UES understands the proposed construction will be constructed using reinforced concrete, masonry, and structural steel construction. UES was provided structural loads via email on April 29th, 2022 by Kristi Kramer, from Mike Carter Construction, Inc. Maximum anticipated column and wall loads are on the order of **84 kips** and **4 klf**, respectively.

If conditions vary from those indicated above, UES should be requested to review the data to see if the recommendations contained herein are still valid.

The soils at the explored locations generally consisted of 1.5" to 2" of asphalt, with the exception of the location of B06 where a 5" layer of concrete was encountered, atop loose to very dense, fine to medium grained sand with variable amounts of limestone fragments from the ground surface to approximate depths of 6 to 8 feet below ground surface (BGS). The following layer consisted of weathered limestone with some sand to approximately 13 to 18 feet BGS. The borings then showed intermittent layers of medium dense to dense sand and sand with varying amounts of limestone fragments to the termination depth of the borings at 20 feet below ground surface (BGS).

Groundwater at the time of testing (April 2022) was encountered at an approximate depth of 5'3" to 7' BGS.

Based on the subsoil conditions and the anticipated foundation loads, it is UES's professional opinion that the proposed construction can be supported on a conventional shallow foundation system bearing on properly compacted existing soils or on properly compacted engineered fill. A net allowable soil bearing pressure of **3,500 pounds per square foot (psf)** may be used for the design of shallow isolated spread footings and/or continuous strip footings. Design and installation criteria have been provided herein.

UES appreciates the opportunity to be of service to you on this project and look forward to a continued association with **Mike Carter Construction**, **Inc.** Please, contact the undersigned if you have any questions or comments, or if UES may further assist you as your plans proceed.

Respectfully Submitted, UNIVERSAL ENGINEERING SCIENCES Registry No. 4930

David Lopez, E.I. Staff Engineer

Estela G. León Aguilar, M.S., P.E. Geotechnical Department Manager Professional Engineer #83307 State of Florida

This item has been digitally signed and sealed by [Estela G. León Aguilar] on the date adjacent to the seal. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

TABLE OF CONTENTS

1.0 INTRODUCTION	1
1.1 Project Description	
1.2 Purpose	
1.3 Scope of Services	
2.0 OBSERVATIONS	4
2.1 SITE OBSERVATION AND HISTORICAL DATA	4
2.2 LABORATORY TESTING AND PROCEDURES	
2.3 GEOMORPHIC CONDITIONS	
2.4 FIELD EXPLORATION	5
3.0 SUBSURFACE CONDITIONS	7
3.1 Hydrogeological Conditions	7
4.0 FOUNDATION RECOMMENDATIONS	8
4.1 GENERAL	
4.2 Site Preparation Recommendations	
4.3 Design of Footings	
4.4 Floor Slabs	
5.0 EXCAVATION CONDITIONS	11
6.0 REPORT LIMITATIONS	12
7.0 BASIS FOR RECOMMENDATIONS	12

Appendices

- Appendix ARecord of Test BoringsAppendix BNotes Related to Test BoringsAppendix CDiscussion of Soil GroupsAppendix DHydraulic Conductivity Results

1.0 INTRODUCTION

1.1 Project Description

The subject property is located at 3090 Sheridan Street in Hollywood, Florida. **Figure 1** shows the site location plan. It is UES's understanding that this project is to consist of the construction of a 3-story CMU building approximately $\pm 34,135$ ft². A preliminary design site plan prepared by Studio x2 Architects, PA, dated February 8, 2022, was provided by the client. **Figure 2** shows the preliminary site plan. The site is occupied by multiple commercial buildings and associated paved parking lots that are to be demolished for the proposed construction.

Structural details were provided by the client. UES understands the proposed construction will be constructed using reinforced concrete, masonry, and structural steel construction. UES was provided structural loads via email on April 29th, 2022 by Kristi Kramer, from Mike Carter Construction, Inc. Maximum anticipated column and wall loads are on the order of **84 kips** and **4 klf**, respectively.

The recommendations provided in this report are based upon the information noted above. If project information differs significantly, please inform UES so that UES may review and revise the recommendations, if necessary, with respect to any modifications.

1.2 Purpose

The primary purpose of the geotechnical exploration was to evaluate the general type and condition of the subsurface soil materials underlying the project site, to provide professional opinions with respect to site preparation, hydrogeological conditions, and recommend foundation design parameters for the proposed structure.

1.3 Scope of Services

The primary objectives of the geotechnical exploration were to collect subsurface data at the proposed project site, summarize test results, and discuss any apparent site conditions that may have geotechnical significance for building construction. The following are provided within this report:

- 1. Soil boring logs depicting the subsurface soil conditions encountered during the field exploration.
- 2. A review of each soil sample obtained during the field exploration by the geotechnical engineer.
- 3. Analysis of the existing soil conditions found during the exploration with the respect to foundation support.

FIGURE 1 – SITE LOCATION PLAN

