ATTACHMENT A Application Package

GENERAL APPLICATION

APPLICATION DATE: 03/08/2025

2 600 Hollywood Blvd Room 315 I ollywood, FL 33022	APPLICATION TYPE (CHECK ALL Technical Advisory Committee Planning and Development Board City Commission	THAT APPLIES): Art in Public Places Committee Ivariance Historic Preservation Board Special Exception Administrative Approval					
el: (954) 921-3471 Email: Development@ lollywoodfl.org	PROPERTY INFORMATION Location Address: <u>312 Bouga</u> Lot(s): <u>10</u> Bloc	invilla Terrace, Hollywood, FL 33019 ck(s): <u>3</u> Subdivision:Atlantic shores North Beach					
UBMISSION REQUIREMENTS:	Folio Number(s): <u>5142 2402</u>	0140					
One set of signed & sealed plans (i.e. Architect or Engineer)	Zoning Classification: Existing Property Use:Resident	Land Use Classification: ial Sq Ft/Number of Units:					
One electronic <u>combined</u> PDF submission (<i>max. 25mb</i>)	Is the request the result of a viola Has this property been presented t Number(s) and Resolution(s);	ation notice? X Yes I No If yes , attach a copy of violation. to the City before? If yes, check al that apply and provide File					
Completed Application Checklist							
Application fee	Explanation of Request:						
	Phased Project: Yes 🕱 No 🗋 Number of Phases:						
	Project	Proposal					
1075	Units/rooms (# of units)	# UNITS: #Rooms					
This explication must	Proposed Non-Residential Uses S.F.)						
be <u>completed in full</u>	Open Space (% and SQ.FT.) Required %: (Area:						
and submitted with all	Parking (# of spaces)	PARK. SPACES: (#)					
on a Board or	Height (# of stories)	(# STORIES) [(FT.)					
Committee's agenda.	Gross Floor Area (SQ. FT)	Lot(s) Gross Area (FT.)					
responsible for obtain-	Name of Current Property Owner: Rafael Mordukhaev						
checklist for each type	Address of Property Owner: <u>312 Bougainvilla Terrace</u> , Hollywood, FL 33019						
of application.	Telephone:917-774-8000 Email Address: redraffi@gmail.com						
Applicant(s) or their authorized legal agent <u>must</u> be present at all Board or Committee meetings.	Applicant Fred Rezvani Consultant Representative Tenant Address: 4409 Jefferson Street, Hollywood FL 33021 Telephone: 954-200-2721						
	Email Address #2:						
	Date of Purchase: 4/6/2021	s there an option to purchase the Property? Yes 🛛 No 🗙					
	If Yes, Attach Copy of the Contract.						
CLICK HERE FOR	Noticing Agent (FTAC & Board su	ibmissions only) :					
MEETING DATES	E-mail Address:						

GENERAL APPLICATION

CERTIFICATION OF COMPLIANCE WITH APPLICABLE REGULATIONS

The applicant/owner(s) signature certifies that he/she has been made aware of the criteria, regulations and guidelines applicable to the request. This information can be obtained in Room 315 of City Hall or on our website at <u>www.hollywoodfl.org</u>. The owner(s) further certifies that when required by applicable law, including but not limited to the City's Zoning and Land Development Regulations, they will post the site with a sign provided by the Office of Planning and Development Services. The owner(s) will photograph the sign the day of posting and submit photographs to the Office of Planning and Development Services as required by applicable law. Failure to post the sign will result in violation of State and Municipal Notification Requirements and Laws.

(I)(We) certify that (I) (we) understand and will comply with the provisions and regulations of the City's Zoning and Land Development Regulations, Design Guidelines, Design Guidelines for Historic Properties and City's Comprehensive Plan as they apply to this project. (I)(We) further certify that the above statements and drawings made on any paper or plans submitted herewith are true to the best of (my)(our) knowledge. (I)(We) understand that the application and attachments become part of the official public records of the City and are not returnable.

Signature of Curre	ent Owner:	Date:
PRINT NAME:	Rafael Mordukhaev	Date:
Signature of Cons	ultant/Representative: Fred Rezvani	Date: <u>3/8/2025</u>
PRINT NAME:	Fred Rezvani	Date:
Signature of Tena	nt: N/A	Date:
PRINT NAME:	N/A	Date:

Current Owner Power of Attorney

I am the current owner of the described real property and that I am aware of the nature and effect the request for ________ to my property, which is hereby made by me or I am hereby authorizing __________to be my legal representative before the _______(Board and/or Committee) relative to all matters concerning this application.

Sworn to and subscribed before me
this _____ day of ______ Signature of Current Owner
Notary Public Print Name
State of Florida
My Commission Expires: _____(Check One) Personally known to me; OR Produced Identification _____

DATE:	02/03/2	5				
DRAW	ING	WRP				
REVIS	IONS	BY				
CONSIGN, LLC	Consulting Engineers Cert. of Auth. # 31618	14021 SW 143 CT, BAY 1 MIAMI, FL 33186				
	RAFAEL MORDUKHAEV 312 BOUGANVILLA T HOLLYWOOD, FL. 33019					
RAFAEL MORDUKHAEV	PROPERTY LOCATED AT	312 BOUGANVILLA TERRACE HOLLYWOOD, FL. 33019				
SHEET DESCRIPTION						
	SD-	1				

CUSTOMER:

RAFAEL MORDUKHAEV

DESIGNER:

Adolfo Espino PE STATE OF FLORIDA REG. # 98949

CODES AND SPECIFICATIONS:

FLORIDA BUILDING CODE 2023 8TH EDITION

A.S.C.E 7-22 ALUMINUM DESIGN MANUAL 2020 A.I.S.C 16TH EDITION ACI 318-20 THIS ITEM HAS BEEN DIGITALLY SIGNED AND SEALED

ON THE DATE ADJACENT TO THE SEAL. PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED AND THE SIGNATURE MUST BE VERIFY ON ANY ELECTRONIC COPIES

> CONSIGN LLC 14021 SW 143rd COURT - BAY 1, MIAMI, FL 33186

CONSIGN, LLC

CONSULTING ENGINEERS

CERTIFICATION OF AUTH. # 31618

14021 SW 143rd Court - Bay 1, Miami, Florida 33186 - Phone -Fax # (305) 253-9442

ALUMINUM CANOPY 14'-8"x24'-8" - CALCULATIONS

DESIGN CRITERIA & APPLICABLE CODES

F.B.C 2023 8TH EDITION A.S.C.E. 7-22 ALUMINUM DESIGN MANUAL 2020 A.I.S.C 16TH EDITION ACI 318-19

1.- WIND LOAD CALCULATIONS - Z < 60 ft

WIND CODE :	ASCE 7-22					
RISK CATEGORY :	II					
WINDSPEED :	V =	175	MPH	- FBC 2023 - Figure 1	609.3	
MEAN ROOF HEIGHT :	Z =	8.75	ft	<	60	ft
EXPOSURE CATEGORY :	"D"	- FBC 2023 - 3105.	4.2.2			
EFFECTIVE AREA, EA =	23.67 ft	Х	3.67 ft	=	EA = 87 ft2	
Kzt =	1	- Section 26.8-2 AS	CE 7-22			
Kd =	0.85	- Table 26.6-1 ASC	E 7-22			
Kz =	1.03	- Table 26.10-1 AS	CE 7-22			
qh =	0.00256 * Kz * K	zt Kd * V ²		- Section 30.3-1		
	68.64	psf				
And:						
Average Slope (θ) =	0.12°					
L =	14.7	ft				
h =	8.75	ft				
h / L =	0.60	ft	<	1.0		
And:						
a = Least of :	1.5	ft	10%L			
	3.50	ft	0.4h			
a = No less than	3	ft				
Then a =	3.0	ft				
Knowing That:						
$4a^2 =$	36.0 ft2	<	EA = 86.8 ft2			
Then:						
C _N =	-1.20	Toward Roof - All zo	ones	Figure 30.5.1 Mon	oclono Eroo Poofe ((Doop Buildings)
	0.50	Away from Roof - Al	Izones	- Figure 50.5-1 - Mori		pen buluings)
W1 =	-82.37	psf - C	RITICAL UPLIFTING WIND	PRESSURE		
W2 =	34.32	psf - C	RITICAL GRAVITY WIND PF	RESSURE		

1.1.- CHECKING LOADS COMBINATIONS. - ASCE 7-22

Live Load - L =	20	psf	- DESIGN LOADS PER ASCE 7-22
Dead Load - D =	10	psf	- DESIGN LOADS PER ASCE 7-22
Wind Load - W1 =	-82.37	psf	- CRITICAL UPLIFTING WIND PRESSURE
Wind Load - W2 =	34.32	psf	- CRITICAL GRAVITY WIND PRESSURE
1	D	4	D+0.6W
2	D+L	5	D+0.75L+0.6W
3	D+0.75L	6	0.6D+0.6W

1.2.- CRITICAL DESIGN LOADS:

	CRITICA		LIVE LOAD, L = DEAD LOAD, D = AWAY WIND LOAD, W1 = FOWARD WIND LOAD, W2 = INATION (D+0.75L+0.6W2) =	20.0 10.0 -82.37 34.32 45.59	#/SQF #/SQF #/SQF #/SQF #/SQF	P _{ASD} 1		
	CR	ITICAL UPLIFT CO	MBINATION (0.6D+0.6W1) =	-43.42	#/SQF	P _{ASD} 2		
2 CHECKING CRITICAL	MAIN BEAM - SPA	N = 23' - 8" - (1) ALUMINUM SQ.T 6"X	6"X1/4"				
	Afferent Width	b =	4.58	ft				
	W	$= P_{ASD}1 \times b =$	208.96	Lb/ft				
	Critical Sir	ngle Span, L =	23.67	ft				
			W	x	²	=	14630	lhs-ft
		M =		8			11000	
			Then	·	М	=	175.56	Kip-in
CHEC	KING TO BENDING:							
	(UnWelded - See re	eference ADM 2020	- Table 2-19) - Elements in F	lexural Compression				
	,	With :	$\lambda = b / t =$	22.0	< 33.1			
		Then Fb(UnV	Velding elements in flexure) =	31.80	Ksi	- 6061T6 Alloy		
	Then	Srqr'd =	M	=	5.52	in3		
		· · · ·	Fb	-				
	Then try with : (1) SQ.T 6"x6"x1/4"						
	Sxx =	5.75	in3	>	Srqr'd =	5.52	in3	0.K.
	lxx =	10.58	in4					
CHEC	KING DEFLECTION:							
	5	*	W	*	L^4	=	1.09 in	
	384	*	E _{Alum}	*	lxx			
		Then	1.09 in	<	1.1	8 ft (L/240)	0.K.	
THEN USE:	(1) SQ.T 6"x6"x1	/4"						
(Critical Read	ction) Rf1a = WxL/2 =	2473	Lbs	By Critical Gravity C	ombination at er	nds		
	Rf1b =	2355	Lbs	By Critical Uplift Co	mbination at end	s		

CONSIGN, LLC

CONSULTING ENGINEERS

CERTIFICATION OF AUTH. # 31618

14021 SW 143rd Court - Bay 1, Miami, Florida 33186 - Phone -Fax # (305) 253-9442

3 CRITICAL COLUMN - LE	NGHT= 8'-0" -	(1) ALUMINU	M SQ.T 6"X6"X1/4"				
	Try Using	(1) ALUMINUM	SQ T 6"X6"X1/4"	Tributary area A =	90 44 ft2		
	ity comgi	(1) / 201111 (0111)			00111112		
COLUMN T	ENSION CHECK:	PASD2	x	А			
(CRIT		3927	lbs				
CHECKING TENSION(CRITICAL)		0021	100				
USING STRUCTURAL ALUMINUM	1 T-6061 ALLOY - I	Fv=9.1Ksi (FRON	ALUMINUM DESIGN MANUAL	- TABLE 2-19W)			
		, , , , , , , , , , , , , , , , , , ,					
	Type		Uplift Load		Heigth(FT)		
	1		3927		8.0	•	
Nominal Size	A(in2)	rxx(in)	L(in)	K(Factor)	KL(in)	KL / r]
(1) ALUMINUM SQ.T 6"X6"X1/4"	5.75	2.35	96	1.0	96	41	
	Then:	A ra'd =	3927	. /	9100	=	0.43 in ²
	-	And	0.43	<	5.75	0.K.	
		Kl/r =	41	<	240	0.K.	
COLUMN COMPR	ESSION CHECK:	P _{ASD} 1	x	А			
(CRITICAL GR	AVITY LOAD) P =	4124	lbs				
CHECKING COMPRESION (CRIT	ICAL)						
	Type			Load(lbs) Gravity		Heigth(FT)	
	1	•		4124	-	8.0	-
Nominal Size	A(in2)	rxx(in)	L(in)	K(Factor)	KL / r	b / t	Fa(ksi) - 2-19W
(1) ALUMINUM SQ.T 6"X6"X1/4"	5.75	2.35	96	1.0	41	22 < 28.2	9.10
	Then:	Pa = Fa x A =	52325 lbs	>	4124 lbs	0.K.	
		Kl/r =	41	<	<u>120</u>	0.K.	
THEN USE:	(1) ALUMINUM	SQ.T 6"X6"X1/	4"				
4 CHECKING TYPICAL INS	SULATED ALU	MINUM PANE	L - (1) 3"x0.030"x2 SKIN E	BY ELITE ALUMINUM C	ORP.		
	WINDSPEED=	175	MPH	- FBC 2023 - Figure 1609	9.3		
EXPOSU	JRE CATEGORY=		"D"	- FBC 2023 - 3105 4 2 2			
CRITICAL PRESURE=	= 45.59 psf	<	50 psf	O.K.		SEE DOC FL7561-R7	ATTACHED
	10.00 por			O II A			
CRITICAL SPAN=	= 7.08 ft	<	8.97 ft (L/240)	О.К.		SEE DOC FL7561-R7	ATTACHED
			· · · · · · · · · · · · · · · · · · ·		ι		
5 CHECKING INSULATED	PANEL TO AL	UMINUM PUR	LIN CONNECTION - DETA	ALSC&D			
Uplift Load= $P_{ADD}2x4'-7"x12"=$	= 199	lhs	Per Connector				
	100	155					
PULL-OUT ON ALLIMINUM PURI	ING						
Try using ·	(1) 1/4"ΦX5" S S	Screw @ Max 12	2" O C				
Spacing Between Bolts	(.) +/(0 0.0	>	1	in	100%	- For Pull-Out	
Edge Distance		>	0.5	in	100%	- For Pull-Out	
		F	0.0				
PULL-OUT CHECKING	Ru =	396	x	1 Screw	х	100%	
		396	lbs	>	199	lbs	0.K.
				-			
THEN USE:	(1) 1/4"ΦX5" S.	S Screw @ Ma	x 12" O.C				
	.,						

6.- CHECKING BEAMS TO COLUMN CONNECTION - DETAILS A & B

	V = Shear = Rf1a =	2473	lbs	Per Connection
--	--------------------	------	-----	----------------

(6) 1/2" § S.S Grade 316 Thru Bolt per Connection

CHECKING SHEAR - TWO SID	DES IN SHEAR						
Yield Strength, fy =	30000	psi					
Allowable Strength, fallow = 0.4	fy = 12000	psi					
Section area, A =	0.16	in ²	- Critical Threaded Zone				
	Ru = 2 x A x fallow =	3817	х	6 Bolts			
		22902	lbs	>	2473	lbs	0.K.

THEN USE: (6) 1/2"φ S.S Grade 316 Thru Bolt per Connection

7.- CHECKING COLUMN BOTTOM BRACKET CONNECTION - DETAIL C

Crit. Uplift Load =	T = 392	7		lbs	From critical column design
Try using :	(6) 1/2"φ S	S.S Gr	ade 316	6 Thru E	Bolt per Connection
CHECKING SHEAR - TWO S Yield Strength, fy = Allowable Strength fallow = 0	DES IN SHEAR 3000	00	psi psi		
Section area, A =	0.16 Ru = 2 x A x fa	6 allow =	= 3	in ² 3817	- Critical Threaded Zone x

THEN USE: (6) 1/2"φ S.S Grade 316 Thru Bolt per Connection

CONSIGN, LLC

CONSULTING ENGINEERS

CERTIFICATION OF AUTH. # 31618

14021 SW 143rd Court - Bay 1, Miami, Florida 33186 - Phone -Fax # (305) 253-9442

8.- CHECKING ALUMINUM BOTTOM BARCKET TO EXISTNG CONCRETE SLAB CONNECTION - DETAIL C

Crit. Uplift Load = T =	= 3927	lbs	Per Connection				
Try using :	(4) 1/2"ø S.S We	dae Bolt Anchor I	per Plate (Min. embed. 4 1/2") Into	Existing Concrete Slab			
Spacing Between Bolts =	3	<	6	in	<u>63%</u>	- For Tension	
Edge Distance		>	4	in	100%	- For Tension	
TENSION CHECK							
	Ru =	1795	x	4 Anchors	х	63%	
		4523	lbs	>	3927	lbs	0.K.

THEN USE: (4) 1/2"φ S.S Wedge Bolt Anchor per Plate (Min. embed. 4 1/2") Into Existing Concrete Slab

Diagrams

Notation

a = 10% of least horizontal dimension or 0.4*h*, whichever is smaller but not less than 4% of least horizontal dimension or 3 ft (0.9 m).

- h = Mean roof height, ft (m).
- L = Horizontal dimension of building, measured in along-wind direction, ft (m).
- θ = Angle of plane of roof from horizontal, degrees.

Net Pressure Coefficients, C_N

Poof	Effective Wind	,		Clear W	ind Flow		
Angle, θ	Area	Zo	ne 3	Zo	ne 2	Zo	ne 1
0°	$\leq a^2$	2.4	-3.3	1.8	-1.7	1.2	-1.1
	$> a^2, \le 4.0a^2$	1.8	-1.7	1.8	-1.7	1.2	-1.1
	$> 4.0a^2$	1.2	-1.1	1.2	-1.1	1.2	-1.1
7.5°	$\leq a^2$	3.2	-4.2	2.4	-2.1	1.6	-1.4
	$> a^2, \le 4.0a^2$	2.4	-2.1	2.4	-2.1	1.6	-1.4
	$> 4.0a^2$	1.6	-1.4	1.6	-1.4	1.6	-1.4
15°	$\leq a^2$	3.6	-3.8	2.7	-2.9	1.8	-1.9
	$> a^2, \le 4.0a^2$	2.7	-2.9	2.7	-2.9	1.8	-1.9
	$> 4.0a^2$	1.8	-1.9	1.8	-1.9	1.8	-1.9
30°	$\leq a^2$	5.2	-5	3.9	-3.8	2.6	-2.5
	$> a^2, \le 4.0a^2$	3.9	-3.8	3.9	-3.8	2.6	-2.5
	$> 4.0a^2$	2.6	-2.5	2.6	-2.5	2.6	-2.5
45°	$\leq a^2$	5.2	-4.6	3.9	-3.5	2.6	-2.3
	$> a^2, \le 4.0a^2$	3.9	-3.5	3.9	-3.5	2.6	-2.3
	$> 4.0a^2$	2.6	-2.3	2.6	-2.3	2.6	-2.3
				Obstructed	l Wind Flow		
		Zo	ne 3	Zo	ne 2	Zo	ne 1
0°	$\leq a^2$	1	-3.6	0.8	-1.8	0.5	-1.2
	$> a^2, \le 4.0a^2$	0.8	-1.8	0.8	-1.8	0.5	-1.2
	$> 4.0a^2$	0.5	-1.2	0.5	-1.2	0.5	-1.2
7.5°	$\leq a^2$	1.6	-5.1	1.2	-2.6	0.8	-1.7
	$> a^2, \le 4.0a^2$	1.2	-2.6	1.2	-2.6	0.8	-1.7
	$> 4.0a^2$	0.8	-1.7	0.8	-1.7	0.8	-1.7
15°	$\leq a^2$	2.4	-4.2	1.8	-3.2	1.2	-2.1
	$> a^2, \le 4.0a^2$	1.8	-3.2	1.8	-3.2	1.2	-2.1
	$> 4.0a^2$	1.2	-2.1	1.2	-2.1	1.2	-2.1
30°	$\leq a^2$	3.2	-4.6	2.4	-3.5	1.6	-2.3
	$> a^2, \le 4.0a^2$	2.4	-3.5	2.4	-3.5	1.6	-2.3
	$> 4.0a^2$	1.6	-2.3	1.6	-2.3	1.6	-2.3
45°	$\leq a^2$	4.2	-3.8	3.2	-2.9	2.1	-1.9
	$> a^2, \le 4.0a^2$	3.2	-2.9	3.2	-2.9	2.1	-1.9
	$> 4.0a^2$	2.1	-19	2.1	-19	2.1	-19

Notes

- 1. C_N denotes net pressures (contributions from top and bottom surfaces).
- 2. Clear wind flow denotes relatively unobstructed wind flow with blockage less than or equal to 50%. Obstructed wind flow denotes objects below roof inhibiting wind flow (>50% blockage).
- 3. For values of θ other than those shown, linear interpolation is permitted.
- 4. Plus and minus signs signify pressures acting toward and away from the top roof surface, respectively.
- 5. Components and cladding elements shall be designed for positive and negative pressure coefficients shown.

Figure 30.5-1. Components and cladding ($0.25 \le h/L \le 1.0$): net pressure coefficient, C_N , for open buildings—monoslope free roofs, $\theta \le 45^\circ$.

$$q_z = 0.00256K_z K_{zt} K_e V^2 (lb/ft^2); V, mi/h$$
 (26.10-1)

$$q_z = 0.613 K_z K_{zt} K_e V^2 (N/m^2); V, m/s$$
 (26.10-1.SI)

where

 K_z = Velocity pressure exposure coefficient, see Section 26.10.1; K_{zt} = Topographic factor, see Section 26.8.2;

 K_{e} = Ground elevation factor, see Section 26.9;

V = Basic wind speed, see Section 26.5; and

 q_z = Velocity pressure at height z.

The velocity pressure at mean roof height is computed as $q_h = q_z$ evaluated from Equation (26.10-1) using K_z at mean roof height *h*.

The basic wind speed, V, used in determination of design wind loads on rooftop structures, rooftop equipment, and other building appurtenances shall consider the Risk Category equal to the greater of the following:

- 1. Risk category for the building on which the equipment or appurtenance is located, or
- 2. Risk category for any building or other structure to which the equipment or appurtenance provides a necessary service.

26.11 GUST EFFECTS

26.11.1 Gust-Effect Factor The gust-effect factor for a rigid building or other structure is permitted to be taken as 0.85.

26.11.2 Frequency Determination To determine whether a building or other structure is rigid or flexible as defined in Section 26.2, the fundamental natural frequency, n_1 , shall be established using the structural properties and deformational characteristics of the resisting elements in a properly substantiated analysis. Low-rise buildings, as defined in Section 26.2, are permitted to be considered rigid.

26.11.2.1 Limitations for Approximate Natural Frequency As an alternative to performing an analysis to determine n_1 , the approximate building natural frequency, n_a , shall be permitted to be calculated in accordance with Section 26.11.3 for structural steel, concrete, or masonry buildings meeting the following requirements:

- 1. The building height is less than or equal to 300 ft (91 m).
- 2. The building height is less than four times its effective length, $L_{\rm eff}$.

The effective length, L_{eff} , in the direction under consideration shall be determined from the following equation:

$$L_{\rm eff} = \frac{\sum_{i=1}^{n} h_i L_i}{\sum_{i=1}^{n} h_i}$$
(26.11-1)

The summations are over the height of the building, where h_i is the height above grade of level *i*, and L_i is the building length at level *i* parallel to the wind direction.

26.11.3 Approximate Natural Frequency The approximate lower bound natural frequency (n_a) , in Hz, of concrete or structural steel buildings meeting the conditions of

Table 26.10-1. Velocity Pressure Exposure Coefficients, K_h and K_z .

Height a Ground	above Level, <i>z</i> or <i>h</i>	E	Exposure	
ft	m	В	С	D
0–15	0-4.6	0.57 (0.70)*	0.85	1.03
20	6.1	0.62 (0.70)*	0.90	1.08
25	7.6	0.66 (0.70)*	0.94	1.12
30	9.1	0.70	0.98	1.16
40	12.2	0.74	1.04	1.22
50	15.2	0.79	1.09	1.27
60	18.3	0.83	1.13	1.31
70	21.3	0.86	1.17	1.34
80	24.4	0.90	1.21	1.38
90	27.4	0.92	1.24	1.40
100	30.5	0.95	1.26	1.43
120	36.6	1.00	1.31	1.48
140	42.7	1.04	1.34	1.52
160	48.8	1.08	1.39	1.55
180	54.9	1.11	1.41	1.58
200	61.0	1.14	1.44	1.61
250	76.2	1.21	1.51	1.68
300	91.4	1.27	1.57	1.73
350	106.7	1.33	1.62	1.78
400	121.9	1.38	1.66	1.82
450	137.2	1.42	1.70	1.86
500	152.4	1.46	1.74	1.89

* Use 0.70 in Chapter 28, Exposure B, when z < 30 ft (9.1 m). Notes:

 Velocity pressure exposure coefficient K_z may be determined from the following formula:

For $z < 15$ ft	$K_z = 2.41 (15/z_g)^{2/\alpha}$
For $z < 4.6$ m	$K_z = 2.41 (4.6/z_g)^{2/\alpha}$
For 15 ft (4.6 m) $\leq z \leq z_q$	$K_z = 2.41 (z/z_g)^{\bar{z}/\alpha}$
For $z_q < z \le 3,280$ ft	c
(1,000 m)	$K_z = 2.41$

2. α and z_g are tabulated in Table 26.11-1.

3. Linear interpolation for intermediate values of height z is acceptable.

4. Exposure categories are defined in Section 26.7.

Section 26.11.2.1 is permitted to be determined from one of the following equations.

For structural steel moment-resisting frame buildings,

$$n_a = 22.2/h^{0.8}$$
 (26.11-2)

$$n_a = 8.58/h^{0.8}$$
 (26.11-2.SI)

For concrete moment-resisting frame buildings,

$$n_a = 43.5/h^{0.9} \tag{26.11-3}$$

$$n_a = 14.93/h^{0.9}$$
 (26.11-3.SI)

ALLOWABLE (STRESS	ES F/Ω FOR BU		PES	TRUCTUR	ES (UNWELDE	â	
Allowable Stresses <i>F/</i> Ω (k/in ²)	Section	Ŭ			6061 - T6 6061 - T6	ASTM B221, B241, E	3429	
Axial Tension axial tension stress on net effective area axial tension stress on cross area	D.2b D.2a	19.5			6061 - 165 6061 - 165 6061 - 16	11 ASTM B221 ASTM B221 ASTM B247 0.000 to	4.000 i	n. thick od creater
Shear or torsion Shear or torsion rupture	G H 2	117			6351 - T5	ASTM B221 0.000 to	1.000 i	n. thick
Bearing				F _{1V} =	35 k/in ²	E =	10,100	k/in ²
bolts or rivets on holes	J.3.6a, J.4.6	39.0		F _{cy} =	35 k/in ²	k _t =	۲	
bolts on slots, pins on holes, flat surfaces	J.3.6b,	25.9		$F_{tu} =$	38 k/in ²	1		
screws in holes	J.6.5, J.8 J.5.5.1	25.3						
		Slendemess Å	F/Ω for $\lambda < \lambda$.	۷.	- 4	=/Ω for < λ < λ ₀	Ŷ	F/Ω for λ > λ₀
Axial Compression						7.	4	•
member buckling	E.2	kLIr	21.2	17.8	0.00047 Å ² -	0.232 A + 25.2	66	51,352 /A ²
<u>Flexure</u> lateral-torsional buckling	F.4	see F.4.2			ees	F 4	66	60.414 A ²
Elements - Uniform Compression				12				
flat elements supported on one edge in columns	B.5.4.1	b/t	21.2	6.7	27.3 - 0.9	10 X	12	2,417 /N ²
whose buckling axis is not an axis of symmetry					Participal States			
flat elements supported on one edge	B.5.4.1	blt	21.2	6.7	27.3 - 0.9	10 Y	10.5	186 /A
in all other columns and all beams		A STATISTICS		1				
flat elements supported on both edges	B.5.4.2	b/t	21.2	20.8	27.3 - 0.2	1 J	33	580 /A
flat elements supported on both edges	B.5.4.4	Ås	21.2	17.8	23.9 - 0.1	49 X	66	60,414 /Å ²
		10 M/12		5	0.0			5
found noilow elements fot elements - direct strength method	6.9.4.0 8.5.4.6	(1/9/1) A	21.2	23.3	20.2 - 2.02	82 J	11.9	3,176 /[A ⁻ (1+A/35) ⁻
Flaments - Unect suerigui meniou Flaments - Flavinal Commession	0.4.0.0	Ved	2:12	0.00		07 V	70	V/ 076
filat elements supported on both edges	B.5.5.1	b/t	31.8	33.1	40.5 - 0.2	262 A	77	1,563 /A
flat elements supported on tension edge,	B.5.5.2	blt	31.8	6.1	40.5 - 1.4	112 A	19	4,932 /A ²
compression edge free								
flat elements supported on both edges	B.5.5.3	blt	31.8	74.2	40.5 - 0.1	17 X	173	3,502 /A
and with a longitudinal stiffener								
round hollow elements	B.5.5.4	$(R_b/t)^{1/2}$	39.3 - 2.70 X	7.4	26.2 - 0.9	344 A	11.9	3,776 /[\2(1+\135) ²
flat elements - direct strength method	B.5.5.5	Aeq	31.8	21.5	40.5 - 0.4	103 A	50	1,016 /À
<u>Elements - Shear</u>					- Abbes - Abbes			
flat elements supported on both edges	G.2	D/I	12.7	35.3	16.5 - 0.1	107 A	63	38,665 /A ²
flat elements supported on one edge	G.3	bit	12.7	14.7	16.5 - 0.2	257 A	26	6,713 /A ²
pipes and round or oval tubes	G.4	$2.9(R_b/t)^{5/8}(L_V/R_b)^{1/4}$	12.7	62.5	21.5 - 0.	140 A	63	50,264 /A ²
<u>Torsion</u> pipes and round or oval tubes	H.2.1	$2.9(R_b/t)^{5/6}(L_B/R_b)^{1/4}$	12.7	35.3	16.5 - 0.	107 A	63	38,665 /Å ²

0 c 1

January 2020

ALLOWABLE STRESSES F/Ω FOR BUILDING-TYPE STRUCTURES (WELDED) Table 2-19W

Allowable Stresses <i>F/</i> O (k/in ²)	Section	FIO			6061 - T6 ASTM B221, B241, I 6061 - T6510 ASTM B221	B429	
<u>Axial Tension</u> axial tension stress on net effective area	D.2b	12.3			6061 - T6511 ASTM B221 6061 - T6 ASTM B247 0.000 to	0 4.000 t	hick
axial tension stress on gross area	D.2a	9.1			6061 - T6 ASTM B308 0.062 U	DICK and	greater thick
Shear or torsion Shear or torsion rupture	G, H.2	7.4		Frw =	6351 - 15 ASIM B221 0.000 to 15 k/in ² E =	10,100	n. unick K/in ²
Bearing				Ferw	$k_r = k_r $	1	
bolts or rivets on holes	J.3.6a. J.4.6	24.6		E mail	24 k/in ²		
bolts on slots. Dins on holes. flat surfaces	J.3.6b.	16.4		MOL			
	J.6.5, J.8						
screws in holes	J.5.5.1	16.0					
A CONTRACTOR OF A MALE DOMESTIC A CONTRACTOR OF A DATA		Slendemess	F/D fc		F/D for		F/Ω for
Alternation and the most of the second se		Y	A _ A	γ1	$\lambda_1 < \lambda < \lambda_2$	λ2	$\lambda \ge \lambda_2$
Axial Compression							
member buckling	E.2	KLIT	9.1	21.8	0.00007 Å ² - 0.066 Å + 10.5	133	51,352 /A ²
Flexure							
lateral-torsional buckling	F.4	see F.4.2		•	see F.4	133	60,414 /\lambda ²
Elements - Uniform Compression							
flat elements supported on one edge in columns	B.5.4.1	blt	9.1	9.0	12.0 - 0.327 A	25	2,417 / ²
whose buckling axis is not an axis of symmetry						and the	
flat elements supported on one edge	B.5.4.1	blt	9.1	9.0	12.0 - 0.327 A	18.4	111 /A
in all other columns and all beams							
flat elements supported on both edges	B.5.4.2	blt	9.1	28.2	12.0 - 0.105 X	58	346 /A
flat elements supported on both edges	B.5.4.4	As As	9.1	21.8	10.2 - 0.051 Å	133	60.414 /\ ²
and with an intermediate stiffener							
round hollow elements	B.5.4.5	$(R_b/t)^{1/2}$	9.1	6.8	11.8 - 0.396 A	20	3.776 /JX ² (1+X/35) ²]
flat elements - direct strength method	B.5.4.6	Aed	9.1	45.1	12.0 - 0.065 Å	92	554 M
Elements - Flexural Compression	STARK N. L.						
flat elements supported on both edges	B.5.5.1	bit	13.6	36.2	16.0 - 0.065 A	123	982 /A
flat elements supported on tension edge,	B.5.5.2	bit	13.6	6.7	16.0 - 0.350 Å	30	4 932 /Å ²
compression edge free				- 3		;	
flat elements supported on both edges	B.5.5.3	bit	13.6	81.2	16.0 - 0.029 Å	275	2 201 IA
and with a longitudinal stiffener						;	
round hollow elements	B.5.5.4	(R _b /t) ^{1/2}	17.7 - 0.933	A 11.0	11.8 - 0.396 A	20	3 776 /112/14 10/26/21
flat elements - direct strength method	B.5.5.5	And	13.6	23.5	16.0 - 0.100 x		[(CCN1) VI 0110
Elements - Shear						8	VI 000
flat elements supported on both edges	G.2	blt	5.5	47.5	7.3 - 0.038 λ	176	38 666 /1 ²
flat elements supported on one edge	G.3	bit	5.5	19.8	7.3 - 0.092 1	22	6 74 0 11 ²
pipes and round or oval tubes	G.4	2.9(Rb/t) ^{5/8} (Lv/Rb) ^{1/4}	5.5	80.0	9.5 - 0.050 1	901	0,/13/A
Torsion			-		2 0000	120	VI 407'DC
pipes and round or oval tubes	H.2.1	$2.9(R_b tt)^{5/8}(L_s IR_b)^{1/4}$	5.5	47.5	7.3 - 0.038 A	126	38.665 /A ²

38,665 /A²

TABLE 1 – ITW BUILDEX TEKS SELECT[™] SCREWS

	AI	lowable	Pullout \	/alues (P	?/Ω) on (Cold For	ned Stee	el and Al	uminum;	Ω=3.0				
				Ste	el Gaur	a/Thickr	0055				Alumi	num Thi	ckness	
Screw Designation	Nominal Diameter (in.)			510	er Gaug		1233				6063-T5	2	6063	B-T6
		18	16	14	12	1/8"	3/16"	1/4"	5/16"	1/8"	1/4"	3/8"	1/8"	1/4"
#10-16 HWH	0.190	140	182	211	388	404				250			377	
#12-14 HWH	0.216	138	186	230	481	496	809			278	680		434	864
#12-14 UPFH	0.216	140	218	252	473	507	837			274	642		418	812
1/4-14 HWH	0.250	170	224	274	431	582	971			283	732	_	403	997
1/4-20 HWH	0.250	157	231	282	427	571	1066	1422	1422	281	685	1118	396	949

TABLE 2 – ALLOWABLE TENSILE PULL-OUT LOADS (P_{NOT}/Ω), pounds-force^{1, 2, 3, 4}

1. For tension connections, the lower of the allowable pull-out, pullover, and fastener tension strength found in Table 2, 3, and 4, respectively must be used for design.

Nominal strengths are based on laboratory tests. Steel is compliance with AISI Manual of Cold-formed Steel Design, 2008 Edition, Part I: 2 Dimension and Properties for Use with the 2007 North American Cold-Formed Steel Specification with minimum tensile strength 58 ksi. Aluminum is compliance with 2010 Aluminum Design Manual, Part I specification for Aluminum Structures; 6063-T52 with minimum tensile strength 22 ksi, or 6063-T6 with minimum tensile strength 30 ksi.

To calculate LRFD values, multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD Φ factor of 0.5. 2

4. The base-metal thickness of 18 gauge steel is 0.048"; 16 gauge is 0.060"; 14 gauge is 0.075"; and 12 gauge is 0.105":

l	ADLE 5 - ALLU	WADLE	EIENSIL	E PULL-	OVER LU	JADS (P	$NOT(\Omega), p$	ounds	-force			
	Allo	wable Pul	lover Value	s (Ρ/Ω) on	Cold Form	ed Steel an	d Aluminu	m; Ω=3.0)			
Carrow	N1			Steel Gaue	/Thicknes	.c			Alumi	num Thic	kness	
Screw Designation	Diameter (in.)		-		sey micknes				6063-T52	2	606	3-T6
_	· ·	18	16	14	12	1/8"	3/16"	1/8"	1/4"	3/8"	1/8"	1/4"
#10-16 HWH	0.190	557	645	718	718	718		578			640	
#12-14 HWH	0.216	619	798	898	1092	1092	1092	586	827		783	885
#12-14 UPFH	0.216	489	624	716	716	716	716	561	818		750	818
1/4-14 HWH	0.250	661	958	1074	1514	1514	1514	722	1091		944	1183
1/4-20 HWH	0.250	667	916	1076	1568	1568	1568	688	1170	1190	922	1243

ALLOWARD F TENCHE RULL OVER LOADS (R ----1 2 2 4

For tension connections, the lower of the allowable pull-out, pullover, and fastener tension strength found in Table 2, 3, and 4, 1. respectively must be used for design.

Nominal strengths are based on laboratory tests. Steel is compliance with AISI Manual of Cold-formed Steel Design, 2008 Edition, Part I: 2. Dimension and Properties for Use with the 2007 North American Cold-Formed Steel Specification with minimum tensile strength 58 ksi. Aluminum is compliance with 2010 Aluminum Design Manual, Part I specification for Aluminum Structures; 6063-T52 with minimum tensile strength 22 ksi, or 6063-T6 with minimum tensile strength 30 ksi.

To calculate LRFD values, multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD Φ factor of 0.5. 3.

4. The base-metal thickness of 18 gauge steel is 0.048"; 16 gauge is 0.060"; 14 gauge is 0.075"; and 12 gauge is 0.105";

Eastanar	Allowable Faster	ner Strength Ω=3	Nominal Fastener	Strength (Tested)
rastener	Tensile, P _{ts} /Ω (lb)	Shear, P_{ss}/Ω (lb)	Tensile, P _{ts} (lb)	Shear, P _{ss} (lb)
#10-16 HWH	866	536	2598	1607
#12-14 HWH	1076	697	3227	2091
#12-14 UPFH	1039	645	3118	1935
#14-14 HWH	1455	909	4365	2727
#14-20 HWH	1561	908	4683	2725

TABLE 4 – FASTENER STRENGTH OF SCREWS, pound-force^{1, 2, 3, 4}

For tension connections, the lower of the allowable pull-out, pullover, and fastener tension strength found in Table 2, 3, and 4, 1. respectively must be used for design.

2. Nominal strengths are based on laboratory tests;

To calculate LRFD values, multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD Φ factor of 0.5. 3.

The base-metal thickness of 18 gauge steel is 0.048"; 16 gauge is 0.060"; 14 gauge is 0.075"; and 12 gauge is 0.105"; 4.

		Allow	able Sh	ear Valı	ues (S/C	ם) on Cold F	ormed Stee	el and Alumin	um; Ω=3.0			
				C+		and //Thickn	000			Aluminum	Thickness	
Screw Designation	Nominal Diameter (in.)					iges/(Thickh	255/		6063	I-T52	606	З-Тб
		18-18	18-14	16-16	14-14	1/8"-3/16"	12-1/4"	3/16"-1/4"	1/8"-1/8"	1/8"-1/4"	1/8"-1/8"	1/8"-1/4"
# 10-16 HWH	0.190	331	583	475					402		454	
# 12-14 HWH	0.216	372	646	520	646				456	728	566	603
# 12-14 UPFH	0.216	375	662	542	636				520	580	639	542
1/4-14 HWH	0.250	376	622	536	785	838			519	806	731	810
1/4-20 HWH	0.250	356	687	520	760	854	860	860	529	819	692	921

TABLE 5 - ALLOWABLE SHEAR (BEARING) CAPACITY, pounds-force^{1, 2, 3, 4}

1. The lower of the allowable shear (bearing) and the allowable fastener shear strength found in Table 4 and 5, respectively must be used for design.

 Nominal strengths are based on laboratory tests. Steel is compliance with AISI Manual of Cold-formed Steel Design, 2008 Edition, Part I: Dimension and Properties for Use with the 2007 North American Cold-Formed Steel Specification with minimum tensile strength 58 ksi. Aluminum is compliance with 2010 Aluminum Design Manual, Part I specification for Aluminum Structures; 6063-T52 with minimum tensile strength 22 ksi, or 6063-T6 with minimum tensile strength 30 ksi.

3. To calculate LRFD values, multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD Φ factor of 0.5.

4. The base-metal thickness of 18 gauge steel is 0.048"; 16 gauge is 0.060"; 14 gauge is 0.075"; and 12 gauge is 0.105";

Screws Size	Screw Nominal Diameter (inch)	Fastened Material	Minimum Spacing (inch)	Minimum Edge Distance (inch)
No. 10	0 190	Steel	0.570	0.285
	0.150	Aluminum	0.760	0.380
No 12	0.216	Steel	0.648	0.324
110.12	0.210	Aluminum	0.864	0.432
1/4"	0.250	Steel	0.750	0.375
±/ Ŧ	0.230	Aluminum	1.000	0.500

TABLE 6 - MINIMUM FASTENER SPACING AND EDGE DISTANCES

70	vers.
FASTENING	INNOVATIONS

	Minimum				Minimu	m Concrete C	ompressive S	strength			
Nominal	Embedment	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	000 psi
Anchor	Depth,	(17.3	MPa)	(20.7	MPa)	(27.6	MPa)	(41.4	MPa)	(55,2	MPa)
Diameter in.	hnom in. (mm)	Tension Ibs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear lbs. (kN)
1/4	1-3/4	890	1,385	975	1,520	1,130	1,755	1,440	2,560	1,440	2,850
	(44)	(4.0)	(6.2)	(4.3)	(6.8)	(5.0)	(7.8)	(6.4)	(11.4)	(6.4)	(12.7)
1/4	2-1/2	2,485	1,385	2,720	1,520	3,145	1,755	3,150	2,560	3,150	2,850
	(64)	(11.1)	(6.2)	(12.1)	(6.8)	(14.0)	(7.8)	(14.0)	(11.4)	(14.0)	(12.7)
	2	735	1,675	805	1,833	930	2,115	1,180	2,710	1,210	3,295
	(51)	(3.3)	(7.5)	(3.6)	(8.2)	(4.1)	(9.4)	(5.2)	(12.1)	(5.4)	(14.7)
3/8	2-1/2	1,515	1,675	1,655	1,833	1,915	2,115	2,130	2,710	2,180	3,295
	(64)	(6.7)	(7.5)	(7.4)	(8.2)	(8.5)	(9.4)	(9.5)	(12.1)	(9.7)	(14,7)
	3-1/2	3,525	1,675	3,860	1,833	4,455	2,115	4,570	2,710	4,680	3,295
	(89)	(15.7)	(7.5)	(17.2)	(8.2)	(19.8)	(9.4)	(20.3)	(12.1)	(20.8)	(14.7)
	2-3/4	3,000	4,675	3,285	5,120	3,790	5,915	5,975	7,560	6,900	9,205
	(70)	(13.3)	(20.8)	(14.6)	(22.8)	(16.9)	(26.3)	(26.6)	(33.6)	(30.7)	(40.9)
1/2	3-1/2	3,830	5,205	4,195	5,700	4,845	6,590	6,800	7,390	7,855	8,995
	(89)	(17.0)	(23.2)	(18.7)	(25.4)	(21.6)	(29.3)	(30.2)	(32.9)	(34.9)	(40.0)
	4-1/2	5,680	5,205	6,220	5,700	7,180	6,590	9,760	7,390	11,265	8,995
	(114)	(25.3)	(23.2)	(27.7)	(25.4)	(31.9)	(29.3)	(43.4)	(32.9)	(50.1)	(40.0)

Ultimate Load Capacities for 316 Stainless Steel Wedge-Bolt in Normal-Weight Concrete¹²

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at a minumum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

Allowable Load Capacities for 316 Stainless Steel Wedge-Bolt in Normal-Weight Concrete^{1,2,3,4}

	Minimum	Minimum Concrete Compressive Strength									
Nominal Anchor	Embedment Depth, hnom in. (mm)	f'c = 2, (17.3	500 psi MPa)	f'c = 3, (20.7	000 psi MPa)	f'c = 4, (27.6	000 psi MPa)	f'c = 6, (41.4	000 psi MPa)	f'c = 8, (55.2	000 psi MPa)
in.		Tension Ibs. (kN)	Shear Ibs, (kN)	Tension lbs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear lbs. (kN)	Tension Ibs. (kN)	Shear Ibs, (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
1/4	1-3/4	225	345	245	380	285	440	360	640	360	715
	(44)	(1.0)	(1.5)	(1.1)	(1.7)	(1.3)	(2.0)	(1.6)	(2.8)	(1.6)	(3.2)
174	2-1/2	620	345	680	380	785	440	790	640	790	715
	(64)	(2.8)	(1.5)	(3.0)	(1.7)	(3.5)	(2.0)	(3.5)	(2.8)	(3.5)	(3.2)
	2	185	420	200	460	235	530	295	680	305	825
	(51)	(0.8)	(1.9)	(0.9)	(2.0)	(1.0)	(2.4)	(1.3)	(3.0)	(1.4)	(3.7)
3/8	2-1/2	380	420	415	460	480	530	535	680	545	825
	(64)	(1.7)	(1.9)	(1.8)	(2.0)	(2.1)	(2.4)	(2.4)	(3.0)	(2.4)	(3.7)
	3-1/2	880	420	965	460	1,115	530	1,145	680	1,170	825
	(89)	(3.9)	(1.9)	(4.3)	(2.0)	(5.0)	(2.4)	(5.1)	(3.0)	(5.2)	(3.7)
	2-3/4	750	1,170	820	1,280	950	1,480	1,495	1,890	1,725	2,300
	(70)	(3.3)	(5.2)	(3.6)	(5.7)	(4.2)	(6.6)	(6.7)	(8.4)	(7.7)	(10.2)
1/2	3-1/2	960	1,300	1,050	1,425	1,210	1,650	1,700	1,850	1,965	2,250
	(89)	(4.3)	(5.8)	(4.7)	(6.3)	(5.4)	(7.3)	(7.6)	(8.2)	(8.7)	(10.0)
	4-1/2	1,420	1,300	1,555	1,425	1,795	1,650	2,440	1,850	2,815	2,250
	(114)	(6.3)	(5.8)	(6.9)	(6.3)	(8.0)	(7.3)	(10.9)	(8.2)	(12.5)	(10.0)

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at a minimum at the time of installation.

2. Allowable load capacities are calculated using an applied safety factor of 4.0.

3. Allowable load capacities must be multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

4. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

TECH MANUAL – MECHANICAL ANCHORS ©2015 POWERS VOLUME 1 – 9/2015 – REV D

Screw Anchor

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

$$\left(\frac{Nu}{Nn}\right) + \left(\frac{Vu}{Vn}\right) \le 1$$

Where:

 $\begin{array}{l} N_u = \mbox{Applied Service Tension Load} \\ N_n = \mbox{Allowable Tension Load} \\ V_u = \mbox{Applied Service Shear Load} \\ V_n = \mbox{Allowable Shear Load} \end{array}$

LOAD ADJUSTMENT FACTORS FOR SPACING AND EDGE DISTANCES

Anchor Installed in Normal-Weight Concrete

Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critica l Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
	Tension	s _{cr} = 12d	$F_{Ns} = 1.0$	$s_{min} = 4d$	F _{NS} = 0.50
spacing (s)	Shear	s _{cr} = 12d	Fvs = 1.0	s _{min} = 4d	$F_{vs} = 0.75$
Edge Distance (c)	Tension	$c_{cr} = 8d$	$F_{NC} = 1.0$	$c_{min} = 3d$	$F_{NC} = 0.70$
	Shear	$c_{cr} = 12d$	$F_{VC} = 1.0$	$c_{min} = 3d$	Fvc = 0.15

1. Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

LOAD ADJUSTMENT FACTORS FOR NORMAL-WEIGHT CONCRETE

Spacing, Tension (FNS)						
Dia	a. (in.)	1/4 3/8		1/2		
sa (in.)		3	4-1/2	6		
smin (in.)		1	1-1/2	2		
	1	0.50	1	-		
(si	1-1/2	0.63	0.50	-		
inche	2	0.75	0.58	0.50		
g, s (i	2 - 1/2	0.88	0.67	0.56		
acing	3	1.00	0.75	0.63		
Spi	4-1/2	-	1.00	0.81		
	6	-	-	1.00		

Notes: For anchors loaded in tension, the critical spacing (s_{cr}) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load. Minimum spacing (s_{min}) is equal to

4 anchor diameters (4d) at which the anchor achieves 50% of load.

	Spacing, Shear (Fvs)						
Dia	Dia. (in.) 1/4 3/8 1/2						
S	, (in.)	3	4-1/2	6			
smin (in.)		1	1-1/2	2			
	1	0.75	-	-			
(si	1-1/2	0.81	0.75	-			
inche	2	0.88	0.79	0.75			
g, s (i	2 - 1/2	0.91	0.83	0.78			
acing	3	1.00	0.88	0.81			
Sp	4-1/2	-	1.00	0.91			
	6	-	-	1.00			

Notes: For anchors loaded in shear, the critical spacing (s_{cr}) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load. Minimum spacing (s_{min}) is equal to 4 anchor diameters (4d) at which the anchor achieves 75% of load.

Edge Distance, Tension (F_{NC})

Dia. (in.) c _{cr} (in.) c _{min} (in.)		1/4	3/8	1/2			
		ca (in.) 2		4			
		3/4	1-1/8	1-1/2			
	3/4	0.70	-	-			
_	1-1/8	0.79	0.70	-			
c (in.	1-1/2	0.88	0.76	0.70			
nce,	1-7/8	0.97	0.82	0.75			
Dista	2	1.00	0.84	0.76			
dge l	2-1/4	-	0.88	0.79			
Ec	3	-	1.00	0.88			
	4	-	-	1.00			

Notes: For anchors loaded in tension, the critical edge distance (c_{cr}) is equal to 8 anchor diameters (8d) at which the anchor achieves 100% of load.

Minimum edge distance (c_{min}) is equal to 3 anchor diameters (3d) at which the anchor achieves 70% of load.

Edge Distance, Shear (Fvc)						
Dia. (in.)		1/4	3/8	1/2		
c a (in.)		3	4-1/2	6		
cmin (in.)		3/4	1-1/8	1-1/2		
	3/4	0.15	-	-		
~	1-1/8	0.29	0.15	-		
c (in	1-1/2	0.43	0.24	0.15		
nce,	1-7/8	0.58	0.34	0.22		
Dista	2-1/4	0.72	0.43	0.29		
dge	3	1.00	0.62	0.43		
ш	4-1/2	-	1.00	0.72		
	6	-	-	1.00		

Notes: For anchors loaded in shear, the critical edge distance (c_c) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load. Minimum edge distance (c_{min}) is equal to 3 anchor diameters (3d) at which the anchor achieves 15% of load

FLORIDA DEPARTMENT OF Business & Professional Regulation

BCIS Home | Log In | User Registration | Hot Topics | Submit Surcharge | Stats & Facts | Publications | Contact Us | BC

Product Approval USER: Public User

- -

	<u>Product Approval Menu > Product or Application Search > Applicat</u>	ion List > Application Detail
OFFICE OF THE SECRETARY	FL #	FL7561-R7
	Application Type	Revision
	Code Version	2023
	Application Status	Approved
	Comments	
	Archived	
	Product Manufacturer	Elite Aluminum Corporation
	Address/Phone/Email	4650 Lyons Technology Parkway Coconut Creek, FL 33073 (954) 949-3200 bpeacock@elitealuminum.com
	Authorized Signature	Bruce Peacock bpeacock@elitealuminum.com
	Technical Representative	Bruce Peacock
	Address/Phone/Email	4650 Lyons Technology Parkway Coconut Creek, FL 33073 (954) 949-3200 bpeacock@elitealuminum.com
	Quality Assurance Representative Address/Phone/Email	
	Category	Roofing
	Subcategory	Products Introduced as a Result of New Technolog
	Compliance Method	Evaluation Report from a Florida Registered Archit Professional Engineer Evaluation Report - Hardcopy Received
	Florida Engineer or Architect Name who developed the Evaluation Report	Do Kim, P.E.
	Florida License	PE-49497
	Quality Assurance Entity	QAI Laboratories
	Quality Assurance Contract Expiration Date	12/31/2026
	Validated By	James L. Buckner, P.E. @ CBUCK Engineering
		Validation Checklist - Hardcopy Received
	Certificate of Independence	FL7561_R7_COI_certificate of independence.pdf

Referenced Standard and Year (of Standard)

Equivalence o	f Product	Standards
Certified By		

Sections from the Code

1708.2

Product Approval Method	Method 2 Option B
Date Submitted	08/16/2023
Date Validated	08/21/2023
Date Pending FBC Approval	08/25/2023
Date Approved	10/17/2023

Summary of Products

FL #	Model, Number or Name	Description
7561.1	Aluminum/Aluminum Composite Panels	3"/4"/6"x0.024"x1lb EPS Composite Pa EPS Composite Panel, 3"/4"/6"x0.024"> 3"/4"/6"x0.030"x2lb EPS Composite Pa
Limits of Use		Installation Instructions
Approved for use in HV	HZ: Yes	FL7561_R7_II_2023 FBC-Elite Alumint
Approved for use outsi	de HVHZ: Yes	Verified By: Do Kim, P.E. PE 49497
Impact Resistant: No		Created by Independent Third Party: Y
Design Pressure: +80/-	-80	Evaluation Reports
Other: In HVHZ, not to b	be used in structures considered living	FL7561 R7 AE FL 7561 Evaluation Re
areas per FBC Section 16:	16 unless impact protection is provided.	Created by Independent Third Party: Y
See installation drawing for and spans.	or nominal allowable design pressures	

Back Next

Contact Us :: 2601 Blair Stone Road, Tallahassee FL 32399 Phone: 850-487-1824

The State of Florida is an AA/EEO employer. Copyright 2007-2013 State of Florida. :: Privacy Statement :: Accessibility Sta

Under Florida law, email addresses are public records. If you do not want your e-mail address released in response to a publi electronic mail to this entity. Instead, contact the office by phone or by traditional mail. If you have any questions, please cont Section 455.275(1), Florida Statutes, effective October 1, 2012, licensees licensed under Chapter 455, F.S. must provide th address if they have one. The emails provided may be used for official communication with the licensee. However email addre not wish to supply a personal address, please provide the Department with an email address which can be made available to are a licensee under Chapter 455, F.S., please click here .

DO KIM & ASSOCIATES, LLC Consulting Structural Engineers

Florida Board of Engineers Certificate of Authorization No. 26887

Certificate of Independence

Do Kim and Associates, LLC and Do Kim, P.E. do not have nor will acquire financial interest in the company manufacturing or distributing the product or in any other entity involved in the approval process of the product named in the accompanying Florida Product Approval.

Do Kim, P.E. FL #49497

	ITE PAN	EL	SPA to be mu	N T.	ABL[1.67. to. de	ES:	- mate loads (nsf)	
• •		o pormittou				1		
	$3'' \times 0.024$	× 1 -	LBE	PS PA	NELS		3″ × 0,032	>
			AR SPA	AN CH	(2TSA			F
					111137			
	NET	MAX. 4	ALLOWAR	RE SPAN	(FT)		NET	
	ALLOWABLE						ALLOWABLE.	
	LOAD (PSF) ¹	L/80	L/120	L/180	L/240		LOAD (PSF) ¹	
	10	16.17	15.76	15.03	14.10		10	
	20	13.44	13.44	12.22	10.35		20	
	30	10.78	10.78	9.41	6.60		30	
	40	9.22	9.22	6.60	2.85		40	
	50	8.17	8.17	3.79	-		50	
	60	7.40	6.39	0.98	-		60	
	70	6.81	4.51	-	-		70	
	80	6.33	2.64	-	-		80	
	4″ × 0.024 (Allowable	× 1 - E CLE	- LB E Ar Spr	PS PA An Chi	NELS ARTS)		4″ × 0.032 (ALLOWABL	
	NET ALLOWABLE	MAX. 4	ALLOWAB	LE SPAN	N (FT)		NET ALLOWABLE	
	LOAD (PSF) ¹	L/80	L/120	L/180	L/240		LOAD (PSF) ¹	
	10	19.00	19.00	17.17	16.53		10	
	20	15.01	15.01	15.01	13.95		20	
	30	12.50	12.50	12.50	11.38		30	
	40	10.97	10.97	10.97	8.80		40	
	50	9.92	9.92	9.44	6.22		50	
	60	9.13	9.13	7.51	3.64		60	
	70	8.52	8.52	5.58	1.07		70	
	80	8.02	8.02	3.64	-		80	
	6" × 0.024 (Allowable	× 1 – E CLE#	· LB E Ar Spr	IPS PA An Chi	NELS ARTS)		6″ × 0.032 (Allowabl	
	NET ALLOWABLE	MAX. 4	ALLOWAB	LE SPAN	N (FT)		NET ALLOWABLE	
	LOAD (PSF) ¹	L/80	L/120	L/180	L/240		LOAD (PSF) ¹	
	10	23.00	21.24	21.47	20.85	1	10	1
	20	18.06	18.06	18.06	18.06	1	20	1
	30	15.13	15.13	15.13	15.13	1	30	
	40	13.34	13.34	13.34	13.34	1	40	
	50	12.10	12.10	12.10	10.91	1	50	\uparrow
	60	11.17	11.17	11.17	8.43	1	60	1
	70	10.44	10.44	10.30	5.95	1	70	\mathbf{T}

ELITE ALUMINUM PANELS ARE LABELED WITH A FL7561 LABEL TO ENSURE BUILDING INSPECTOR THAT THE **INSULATED PANELS INSTALLED ARE APPROVED FOR USE IN THE STATE OF FLORIDA**

3" × 0.032 (Allowabli	× 1 - E CLE	- LB E Ar Spi	EPS PA An Chi	NELS ARTS)			
NET ALLOWABLE	MAX. 4	MAX. ALLOWABLE SPAN (FT)					
LOAD (PSF) ¹	L/80	L/120	L/180	L/240			
10	17.50	17.50	16.91	15.96			
20	16.64	15.96	14.06	12.16			
30	15.17	14.06	11.21	8.36			
40	13.69	12.16	8.36	4.56			
50	12.22	10.26	5.51	0.76			
60	10.75	8.36	2.66	-			
70	9.27	6.46	-	-			
80	7.80	4.56	-	-			
4″ × 0.032	× 1 -	- LB E	PS PA	NELS			
(ALLOWABL		AR SP	AN CH	ARTS)			
NET Allowable	MAX. ALLOWABLE SPAN (FT)						
LOAD (PSF) ¹	L/80	L/120	L/180	L/240			
10	20.50	20.50	20.11	19.24			
20	19.61	19.24	17.49	15.74			
30	18.17	17.49	14.87	12.24			
40	16.72	15.74	12.24	8.74			
50	15.28	13.99	9.62	5.25			
60	13.84	12.24	7.00	1.75			
70	12.40	10.49	4.38	-			
80	10.95	8.74	1.75	-			
6″ × 0.032 (allowabli	× 1 - E CLE	- LB E Ar Spi	PS PA An Chi	NELS ARTS)			
NET Allowable _.	MAX. 4	ALLOWAE	BLE SPAN	N (FT)			
LOAD (PSF) ¹	L/80	L/120	L/180	L/240			
10	24.00	24.00	24.00	23.42			
20	23.34	23.21	21.82	20.22			
30	22.10	21.63	19.42	17.02			
40	20.86	20.05	17.02	13.82			
50	19.62	18.47	14.62	10.62			
60	18.38	16.89	12.22	7.42			
70	17.14	15.30	9.82	4.22			
80	15.91	13.72	7.42	1.02			

3″ × 0.024	× 2 -	- LB E	PS PA	ANELS	
ALLOWABL	E CLE	AR SPA	AN CH	ARTS)	
NET ALLOWABLE	MAX. 4	ALLOWAB	LE SPAI	N (FT)	
LOAD (PSF) ¹	L/80	L/120	L/180	L/240	
10	19.33	18.95	18.31	17.66	
20	18.11	17.66	16.36	15.06	
30	16.80	16.36	14.41	12.46	
40	15.49	15.06	12.46	9.86	
50	14.18	13.76	10.51	7.26	
60	12.87	12.46	8.57	4.67	
70	11.57	11.16	6.62	2.07	
80	10.26	9.86	4.67	-	
1″ × 0,024	× 2 -	- LB E	IPS PA	ANELS	
$\Delta \Pi \setminus A R $	- CLE4	AR SPA	AN CH		
				11(13)	
NET ALLOWABLE	MAX. 4	ALLOWAE	LE SPAI	N (FT)	
LOAD (PSF) ¹	L/80	L/120	L/180	L/240	
10	21.97	21.97	21.52	20.97	
20	20.77	20.77	19.86	18.76	
30	19.57	19.57	18.21	16.55	
40	18.36	18.36	16.55	14.34	
50	17.16	17.16	14.89	12.13	
60	15.96	15.96	13.24	9.93	
70	14.75	14.75	11.58	7.72	
80	13.55	13.55	9.93	5.51	
5″× 0.024	× 2 -	- LB E	IPS PA	ANELS	f
ALLUWABL	LLLF	AK 254	AN CH	4RT27	(
NET ALLOWABLE	MAX. 4	ALLOWAB	LE SPA	N (FT)	
LOAD (PSF) ¹	1/80	1/120	1 / 180	1/240	
10	23,93	23,93	23,88	23.60	
20	23.20	23.20	23.03	22.46	
30	22.47	22.47	22.18	21.33	
40	21.75	21.75	21.33	20.20	
50	21.02	21.02	20.49	19.07	
60	20.29	20.29	19.64	17.94	
70	19.57	19.57	18.79	16.81	
80	18.84	18.84	17.94	15.68	
				·]	

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	× 2 − LB EPS PANELS E CLEAR SPAN CHARTS MAX. ALLOWABLE SPAN (FT) L/80 L/120 L/180 L/240 20.11 20.03 19.42 18.81 19.02 18.81 17.58 16.35 17.93 17.58 15.73 13.89 16.83 16.35 13.89 11.43 15.74 15.12 12.05 8.97 14.64 13.89 10.21 6.52 13.55 12.66 8.36 4.06 12.46 11.43 6.52 1.60	3" × 0.030 > (ALL WABLE) NET ALL WABLE LOAD (PSF) ¹ 10 20 30 40 50 60 70 80 4" × 0.030 > (ALL WABLE) NET ALL WABLE
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E CLEAR SPAN CHARTS) E CLEAR SPAN CHARTS) MAX. ALLOWABLE SPAN (FT) L/80 L/120 L/180 L/240 20.11 20.03 19.42 18.81 19.02 18.81 17.58 16.35 17.93 17.58 15.73 13.89 16.83 16.35 13.89 11.43 15.74 15.12 12.05 8.97 14.64 13.89 10.21 6.52 13.55 12.66 8.36 4.06 12.46 11.43 6.52 1.60	(ALLOWABLE NET ALLOWABLE LOAD (PSF) ¹ 10 20 30 40 50 60 70 80 4″ × 0.030 × (ALLOWABLE NET ALLOWABLE
(ALLUWABLE CLEAR SPAN CHARI NET MAX. ALLOWABLE PALLOWABLE PALLOWABLE PALLOWABLE SPAN (F1 10 20.11 20.03 19.42 18.1 20 19.02 18.81 17.58 16.35 30 17.93 17.58 15.73 13.3 40 16.83 16.35 13.89 11.4 50 15.74 15.12 12.05 8.5 60 14.64 13.89 10.21 6.5 70 13.55 12.66 8.36 4.0 80 12.46 11.43 6.52 1.6 4" \times 0.030 \times 2 $-$ LB EPS PANEL (ALLOWABLE CLEAR (ALLOWABLE CLEAR SPAN CHART NET MAX. ALLOWABLE SPAN (F1 ALLOWABLE L/80 L/120 L/180 L/2 10 24.17 24.17 24.17 24.17 20 23.64 23.64 23.41 23.3	LULLAR SPAN CHARIS) MAX. ALLOWABLE SPAN (FT) L/80 L/120 L/180 L/240 20.11 20.03 19.42 18.81 19.02 18.81 17.58 16.35 17.93 17.58 15.73 13.89 16.83 16.35 13.89 11.43 15.74 15.12 12.05 8.97 14.64 13.89 10.21 6.52 13.55 12.66 8.36 4.06 12.46 11.43 6.52 1.60 X 2 - LB EPS PANELS CLEAR SPAN CHARTS)	(ALLUWABLE NET ALLOWABLE LOAD (PSF) ¹ 10 20 30 40 50 60 70 80 4″ × 0.030 × (ALLOWABLE NET ALLOWABLE
NET MAX. ALLOWABLE SPAN (FT ALLOWABLE L/80 L/120 L/180 L/2 10 20.11 20.03 19.42 18.3 20 19.02 18.81 17.58 16.73 30 17.93 17.58 15.73 13.8 40 16.83 16.35 13.89 11.4 50 15.74 15.12 12.05 8.5 60 14.64 13.89 10.21 6.5 70 13.55 12.66 8.36 4.0 80 12.46 11.43 6.52 1.6 4" \times 0.030 \times 2 - LB EPS PANEL (ALLOWABLE CLEAR SPAN CHART NET MAX. ALLOWABLE SPAN (FT ALLOWABLE 10 24.17 24.17 20 23.64 23.64 23.41 23 30 22.57 21.90 21.1 40 21.51 20.39 18.3 15.86 16.8 16.8 16.8	MAX. ALLOWABLE SPAN (FT) L/80 L/120 L/180 L/240 20.11 20.03 19.42 18.81 19.02 18.81 17.58 16.35 17.93 17.58 15.73 13.89 16.83 16.35 13.89 11.43 15.74 15.12 12.05 8.97 14.64 13.89 10.21 6.52 13.55 12.66 8.36 4.06 12.46 11.43 6.52 1.60 X 2 - LB EPS PANELS CLEAR SPAN CHARTS)	NET ALLOWABLE LOAD (PSF) ¹ 10 20 30 40 50 60 70 80 4″ × 0.030 ¢(ALLOWABLE NET ALLOWABLE
NET MAX. ALLOWABLE Description Max. ALLOWABLE Span (F1) 10 20.11 20.03 19.42 18.1 20 19.02 18.81 17.58 16.73 30 17.93 17.58 15.73 13.8 40 16.83 16.35 13.89 11.4 50 15.74 15.12 12.05 8.5 60 14.64 13.89 10.21 6.5 70 13.55 12.66 8.36 4.0 80 12.46 11.43 6.52 1.6 4" 0.030 \times 2 $-$ LB EPS PANEL (ALLOWABLE CLEAR SPAN CHART NET MAX. ALLOWABLE Span (F1) 10.21 6.52 1.6 10 24.17 24.17 24.17 24.17 24.17 24.17 20 23.64 23.64 23.41 23.3 30 22.57 21.90 21.1 40 21.51	MAX. ALLOWABLE SPAN (FT) L/80 L/120 L/180 L/240 20.11 20.03 19.42 18.81 19.02 18.81 17.58 16.35 17.93 17.58 15.73 13.89 16.83 16.35 13.89 11.43 15.74 15.12 12.05 8.97 14.64 13.89 10.21 6.52 13.55 12.66 8.36 4.06 12.46 11.43 6.52 1.60 X 2 - LB EPS PANELS CL FAR SPAN CHARTS)	NET ALLOWABLE LOAD (PSF) ¹ 10 20 30 40 50 60 70 80 4″ × 0.030 (ALLOWABLE NET ALLOWABLE
ALLOWABLE L/80 L/120 L/180 L/2 10 20.11 20.03 19.42 18.3 20 19.02 18.81 17.58 16.3 30 17.93 17.58 15.73 13.8 40 16.83 16.35 13.89 11.4 50 15.74 15.12 12.05 8.5 60 14.64 13.89 10.21 6.5 70 13.55 12.66 8.36 4.0 80 12.46 11.43 6.52 1.6 80 12.46 11.43 6.52 1.6 X 0.030 X 2 - LB EPS PANEL (ALLOWABLE CLEAR SPAN CHART 1.0 2.4.17	L/80 L/120 L/180 L/240 20.11 20.03 19.42 18.81 19.02 18.81 17.58 16.35 17.93 17.58 15.73 13.89 16.83 16.35 13.89 11.43 15.74 15.12 12.05 8.97 14.64 13.89 10.21 6.52 13.55 12.66 8.36 4.06 12.46 11.43 6.52 1.60 X 2 - LB EPS PANELS - CLEAR SPAN CHARTS)	ALLOWABLE LOAD (PSF) ¹ 10 20 30 40 50 60 70 80 4″ × 0.030 4″ × 0.030 4″ × 0.030 4″ × 0.030
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	L/80 L/120 L/180 L/240 20.11 20.03 19.42 18.81 19.02 18.81 17.58 16.35 17.93 17.58 15.73 13.89 16.83 16.35 13.89 11.43 15.74 15.12 12.05 8.97 14.64 13.89 10.21 6.52 13.55 12.66 8.36 4.06 12.46 11.43 6.52 1.60 X 2 - LB EPS PANELS - CLEAR SPAN CHARTS)	LDAD (PSF) ¹ 10 20 30 40 50 60 70 80 4" × 0.030 > (ALLOWABLE NET ALLOWABLE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.11 20.03 19.42 18.81 19.02 18.81 17.58 16.35 17.93 17.58 15.73 13.89 16.83 16.35 13.89 11.43 15.74 15.12 12.05 8.97 14.64 13.89 10.21 6.52 13.55 12.66 8.36 4.06 12.46 11.43 6.52 1.60 X 2 - L B EPS PANELS - CL FAR SPAN CHARTS)	10 20 30 40 50 60 70 80 4″ × 0.030 > (ALLOWABLE NET ALLOWABLE
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19.02 18.81 17.58 16.35 17.93 17.58 15.73 13.89 16.83 16.35 13.89 11.43 15.74 15.12 12.05 8.97 14.64 13.89 10.21 6.52 13.55 12.66 8.36 4.06 12.46 11.43 6.52 1.60 × 2 - LB EPS PANELS - CL FAR SPAN	20 30 40 50 60 70 80 4″ × 0.030 × (ALLOWABLE NET ALLOWABLE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.93 17.58 17.53 18.89 17.93 17.58 15.73 13.89 16.83 16.35 13.89 11.43 15.74 15.12 12.05 8.97 14.64 13.89 10.21 6.52 13.55 12.66 8.36 4.06 12.46 11.43 6.52 1.60	30 40 50 60 70 80 4″ × 0.030 > (ALLOWABLE NET ALLOWABLE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.93 17.38 13.73 13.89 16.83 16.35 13.89 11.43 15.74 15.12 12.05 8.97 14.64 13.89 10.21 6.52 13.55 12.66 8.36 4.06 12.46 11.43 6.52 1.60 × 2 - LB EPS PANELS - CL FAR SPAN CHARTS)	30 40 50 60 70 80 4″ × 0.030 > (ALLOWABLE NET ALLOWABLE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.83 16.35 13.89 11.43 15.74 15.12 12.05 8.97 14.64 13.89 10.21 6.52 13.55 12.66 8.36 4.06 12.46 11.43 6.52 1.60 X 2 - LB EPS PANELS - CL FAR SPAN	40 50 60 70 80 4" × 0.030 > (ALLOWABLE NET ALLOWABLE
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15.74 15.12 12.05 8.97 14.64 13.89 10.21 6.52 13.55 12.66 8.36 4.06 12.46 11.43 6.52 1.60 X 2 - LB EPS PANELS - CL FAR SPAN	50 60 70 80 4″ × 0.030 > (ALLOWABLE NET ALLOWABLE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.64 13.89 10.21 6.52 13.55 12.66 8.36 4.06 12.46 11.43 6.52 1.60 × 2 - LB EPS PANELS - CLEAR SPAN CHARTS)	60 70 80 4″ × 0.030 × (ALLOWABLE NET ALLOWABLE
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	13.55 12.66 8.36 4.06 12.46 11.43 6.52 1.60 × 2 - LB EPS PANELS - CLEAR SPAN CHARTS)	70 80 4″ × 0.030 × (ALLOWABLE NET ALLOWABLE
80 12.46 11.43 6.52 1.6 4" × 0.030 × 2 - LB EPS PANEL (ALLOWABLE CLEAR SPAN CHART NET MAX. ALLOWABLE SPAN (FI ALLOWABLE L/80 L/120 L/180 L/24.17 10 24.17 24.17 24.17 24.17 20 23.64 23.64 23.41 23.3 30 22.57 22.57 21.90 21.1 40 21.51 21.51 20.39 18.3 50 20.45 20.45 18.88 16.8 60 19.39 19.39 17.37 14.1 70 18.33 18.33 15.86 12.5 80 17.26 17.26 14.35 10.4 6" × 0.030 × 2 - LB EPS PANEL (ALLOWABLE CLEAR SPAN CHART NET MAX. ALLOWABLE SPAN (FI ALLOWABLE L/80 L/120 L/180 L/20	12.46 11.43 6.52 1.60 × 2 - LB EPS PANELS - CLEAR SPAN CHARTS)	80 4″× 0.030 > (ALLOWABLE NET ALLOWABLE
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	× 2 - LB EPS PANELS F CLEAR SPAN CHARTS)	4″ × 0.030 × (ALLOWABLE NET ALLOWABLE
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	× 2 - LB EPS PANELS F CLEAR SPAN CHARTS)	4″ × 0.030 > (ALLOWABLE NET ALLOWABLE
$4'' \times 0.030 \times 2 - LB EPS PANEL$ (ALLDWABLE CLEAR SPAN CHART NET ALLDWABLE LDAD (PSF) ¹ 10 24.17 24.17 24.17 24.17 20 23.64 24.17 24.17 24.17 24.17 23.64 23.64 23.64 23.64 23.64 23.64 23.7 24.5 <td< td=""><td>× 2 - LB EPS PANELS F CLEAR SPAN CHARTS)</td><td>4″ × 0.030 > (ALLOWABLE NET ALLOWABLE</td></td<>	× 2 - LB EPS PANELS F CLEAR SPAN CHARTS)	4″ × 0.030 > (ALLOWABLE NET ALLOWABLE
(ALLOWABLE CLEAR SPAN CHART NET ALLOWABLE LOAD (PSF) ¹ L/80 L/120 10 24.17 20 23.64 23.64 23.64 20 23.64 21.51 21.51 20 20.45 20.57 22.57 21.51 21.51 20.151 21.51 20.23.64 23.45 30 22.57 21.51 21.51 20.39 18.3 50 20.45 20.45 20.45 20.45 18.88 60 19.39 19.39 17.37 14.3 10.4 70 18.33 18.33 15.86 20.45 14.35 80 17.26 17.26 14.35 10.4 24.17 80 17.26 17.26 14.35 10.4 24.17 ALLOWABLE 24.17 ALLOWABLE	F CLEAR SPAN CHARTS)	ALLOWABLE
NET MAX. ALLOWABLE SPAN CHART ALLOWABLE MAX. ALLOWABLE SPAN (FI 10 24.17 24.17 24.17 24.17 20 23.64 23.64 23.41 23.33 30 22.57 22.57 21.90 21.41 40 21.51 21.51 20.39 18.33 50 20.45 20.45 18.88 16.8 60 19.39 19.39 17.37 14.1 70 18.33 18.33 15.86 12.5 80 17.26 17.26 14.35 10.4 6" x 0.030 x 2 $ L$ E 6" x 0.030 x 2 $ L$ E E $6"$ x 0.030 x 2 $ L$ E E 6.030 x 2 $ L$ E E E 6.030 x 2 $-$ <		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
NE1 MAX. ALLOWABLE SPAN (F1 ALLOWABLE L/80 L/120 L/180 L/2 10 24.17 24.17 24.17 24.17 24.17 20 23.64 23.64 23.41 23. 30 22.57 22.57 21.90 21. 40 21.51 21.51 20.39 18.3 50 20.45 20.45 18.88 16.3 60 19.39 19.39 17.37 14.1 70 18.33 18.33 15.86 12.5 80 17.26 17.26 14.35 10.4 6" 0.030 × 2 LB EPS PANEL (ALLOWABLE CLEAR SPAN CHART NET MAX. ALLOWABLE SPAN (F1 ALLOWABLE L/80 L/120 L/180 L/20		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MAX, ALLOWABLE SPAN (FT)	ALLOWABLE
LOAD (PSF) ¹ L/80 L/120 L/180 L/22 10 24.17 24.17 24.17 24.17 24.17 20 23.64 23.64 23.41 23.30 22.57 21.90 21.1 40 21.51 21.51 20.39 18.2 30.30 22.57 21.90 21.1 40 21.51 21.51 20.39 18.2 30.30 18.2 30.30 30.30 30.30 18.3 16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4 </td <td>ļ</td> <td></td>	ļ	
10 24.17 21.17 21.17 21.17 21.17 21.17 21.17 21.17 21.17 21.17 21.17 21.17 21.17 21	L/80 L/120 L/180 L/240	LUAD (PSF) ¹
20 23.64 23.64 23.41 23.41 30 22.57 22.57 21.90 21. 40 21.51 21.51 20.39 18.3 50 20.45 20.45 18.88 16.3 60 19.39 19.39 17.37 14.3 70 18.33 18.33 15.86 12.5 80 17.26 17.26 14.35 10.4 6" × 0.030 × 2 - LB EPS PANEL (ALLOWABLE CLEAR SPAN CHART NET NET MAX. ALLOWABLE SPAN (FT ALLOWABLE L/80 L/120 L/180 L/2	24.17 24.17 24.17 24.17	10
2.0 2.3.64 2.3.64 2.3.64 2.3.41 2.3.64 30 22.57 22.57 21.90 21.1 40 21.51 21.51 20.39 18.7 50 20.45 20.45 18.88 16.8 60 19.39 19.39 17.37 14.7 70 18.33 18.33 15.86 12.5 80 17.26 17.26 14.35 10.4 6/" × 0.030 × 2 – LB EPS PANEL (ALLOWABLE CLEAR SPAN CHART MAX. ALLOWABLE SPAN (FT LDAD (PSF) ¹ L/80 L/120 L/180 L/2		
30 22.57 21.90 21. 40 21.51 21.51 20.39 18. 50 20.45 20.45 18.88 16.3 60 19.39 19.39 17.37 14. 70 18.33 18.33 15.86 12.5 80 17.26 17.26 14.35 10.4 6″ × 0.030 × 2 – LB EPS PANEL (ALLOWABLE CLEAR SPAN CHART MAX. ALLOWABLE SPAN (F) MAX. ALLOWABLE L/80 L/120 L/180 L/2		20
40 21.51 21.51 20.39 18.7 50 20.45 20.45 18.88 16.3 60 19.39 19.39 17.37 14.7 70 18.33 18.33 15.86 12.5 80 17.26 17.26 14.35 10.4 6″ × 0.030 × 2 - LB EPS PANEL (ALLOWABLE CLEAR SPAN CHART MAX. ALLOWABLE SPAN (FT ALLOWABLE L/80 L/120 L/180 L/2		30
50 20.45 20.45 18.88 16.8 60 19.39 19.39 17.37 14.7 70 18.33 18.33 15.86 12.5 80 17.26 17.26 14.35 10.4 6″ × 0.030 × 2 - LB EPS PANEL (ALLOWABLE CLEAR SPAN CHART MAX. ALLOWABLE SPAN (F1 ALLOWABLE L/80 L/120 L/180 L/26	21.51 21.51 20.39 18.91	40
60 19.39 19.39 17.37 14. 70 18.33 18.33 15.86 12.5 80 17.26 17.26 14.35 10.4 6" × 0.030 × 2 – LB EPS PANEL (ALLOWABLE CLEAR SPAN CHART NET MAX. ALLOWABLE SPAN (F) L/80 L/120 L/180 L/2	20.45 20.45 18.88 16.80	50
70 18.33 18.33 15.86 12.5 80 17.26 17.26 14.35 10.4 6" × 0.030 × 2 - LB EPS PANEL (ALLOWABLE CLEAR SPAN CHART NET ALLOWABLE LDAD (PSF) ¹ L/80 L/120 L/180 L/26	19.39 19.39 17.37 14.70	60
80 17.26 17.26 14.35 10.4 6" × 0.030 × 2 - LB EPS PANEL (ALLOWABLE CLEAR SPAN CHART NET ALLOWABLE LOAD (PSF) ¹ L/80 L/120 L/180 L/28	18.33 18.33 15.86 12.59	70
6" × 0.030 × 2 - LB EPS PANEL (ALLOWABLE CLEAR SPAN CHART NET ALLOWABLE LOAD (PSF) ¹ L/80 L/120 L/180 L/2	17.26 17.26 14.35 10.49	80
6" × 0.030 × 2 - LB EPS PANEL (ALLOWABLE CLEAR SPAN CHART NET ALLOWABLE LOAD (PSF) ¹ 1/80 1/120 1/180 1/2	17.20 17.20 14.00 10.47	
6" × 0.030 × 2 - LB EPS PANEL (ALLOWABLE CLEAR SPAN CHART NET ALLOWABLE LOAD (PSF) ¹ L/80 L/120 L/180 L/2		
(ALLOWABLE CLEAR SPAN CHART NET MAX. ALLOWABLE SPAN (FT ALLOWABLE L/80 L/120 L/180 L/20	\times 2 – I B FPS PANELS	6″ × 0.030 >
NET MAX. ALLOWABLE SPAN (F1 ALLOWABLE L/80 LOAD (PSF)1 L/80		
NET ALLOWABLE LOAD (PSF) ¹ L/80 L/120 L/180 L/2	E ULEAR SPAN UHARIS)	
NET MAX. ALLOWABLE SPAN (FI ALLOWABLE LOAD (PSF) ¹ L/80 L/120 L/180 L/2		(ALLUWABLE
ALLOWABLE LOAD (PSF) ¹ L/80 L/120 L/180 L/2	MAX, ALL DWARLE SPAN (FT)	(ALLUWABLE
LOAD (PSF) ¹ L/80 L/120 L/180 L/2		VET
	I /80 I /120 I /180 I /240	ALLUWABLE
	24 00 24 00 24 00 22 04	(ALLUWABLE NET ALLOWABLE LOAD (PSF) ¹
		(ALLUWABLE NET ALLOWABLE LOAD (PSF) ¹
	- JJES I JJZE I DODA I DODA	(ALLUWABLE NET ALLOWABLE LOAD (PSF) ¹
30 22.94 22.94 22.59 21.8		(ALLUWABLE NET ALLOWABLE LOAD (PSF) ¹ 10 20
40 22.23 22.23 21.85 20.8	23.65 23.65 23.34 22.84 22.94 22.94 22.59 21.85	(ALLUWABLE NET ALLOWABLE LOAD (PSF) ¹ 10 20 30
50 21.53 21.53 21.10 19.8	23.65 23.34 22.84 22.94 22.94 22.59 21.85 22.23 22.23 21.85 20.85	(ALLUWABLE NET ALLOWABLE LOAD (PSF) ¹ 10 20 30 40
60 20.82 20.82 20.36 18.8	23.65 23.65 23.34 22.84 22.94 22.94 22.59 21.85 22.23 22.23 21.85 20.85 21.53 21.53 21.10 19.86	(ALLUWABLE NET ALLOWABLE LOAD (PSF) ¹ 10 20 30 40 50
70 20.11 20.11 19.61 17.9	23.65 23.34 22.84 22.94 22.94 22.59 21.85 22.23 22.23 21.85 20.85 21.53 21.53 21.10 19.86 20.82 20.82 20.36 18.87	(ALLUWABLE NET ALLOWABLE LOAD (PSF) ¹ 10 20 30 40 50 60
	23.65 23.34 22.84 22.94 22.94 22.59 21.85 22.23 22.23 21.85 20.85 21.53 21.53 21.10 19.86 20.82 20.82 20.36 18.87 20.11 20.11 19.61 17.87	(ALLUWABLE NET ALLOWABLE LOAD (PSF) ¹ 10 20 30 40 50 60 70
17,40 10,07 10,07 10,0	23.65 23.34 22.84 22.94 22.94 22.59 21.85 22.23 22.23 21.85 20.85 21.53 21.53 21.10 19.86 20.82 20.82 20.36 18.87 20.11 20.11 19.61 17.87 19.40 19.40 19.87 14.97	(ALLUWABLE NET ALLOWABLE LOAD (PSF) ¹ 10 20 30 40 50 60 70 80
	23.6523.6523.3422.8422.9422.9422.5921.8522.2322.2321.8520.8521.5321.5321.1019.8620.8220.8220.3618.8720.1120.1119.6117.8719.4019.4018.8716.88	(ALLUWABLE NET ALLOWABLE LOAD (PSF) ¹ 10 20 30 40 50 60 70 80
	23.65 23.34 22.84 22.94 22.94 22.59 21.85 22.23 22.23 21.85 20.85 21.53 21.53 21.10 19.86 20.82 20.82 20.36 18.87 20.11 20.11 19.61 17.87 19.40 19.40 18.87 16.88	(ALLUWABLE NET ALLUWABLE LOAD (PSF) ¹ 10 20 30 40 50 60 70 80
4' MAX WIDTH INTERLOCKING PANEL (1/4*/FT MIN SLOPE)	23.65 23.65 23.34 22.84 22.94 22.94 22.59 21.85 22.23 22.23 21.85 20.85 21.53 21.53 21.10 19.86 20.82 20.82 20.36 18.87 20.11 20.11 19.40 18.87 16.88	(ALLUWABLE NET ALLUWABLE LOAD (PSF) ¹ 10 20 30 40 50 60 70 80 000000 00000 FACINGS CRUSS SECTION 4' MAX WIDTH PANEL (1/4*/F
4' MAX WIDTH INTERLOCKING PANEL (1/4"/FT MIN SLOPE) EPS CORE 1LB OR 2LB	23.65 23.65 23.34 22.84 22.94 22.94 22.59 21.85 22.23 22.23 21.85 20.85 21.53 21.53 21.10 19.86 20.82 20.82 20.36 18.87 20.11 20.11 19.61 17.87 19.40 19.40 18.87 16.88	(ALLUWABLE NET ALLOWABLE LOAD (PSF) ¹ 10 20 30 40 50 60 70 80 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 FACINGS CROSS SECTION 4' MAX WIDTH PANEL (1/4'/F EPS CORE 1LB
4' MAX WIDTH INTERLOCKING PANEL (1/4*/FT MIN SLOPE) DRIP EPS CORE 1LB OR 2LB 000000000000000000000000000000000000	23.65 23.65 23.34 22.84 22.94 22.94 22.59 21.85 22.23 22.23 21.85 20.85 21.53 21.53 21.10 19.86 20.82 20.82 20.36 18.87 20.11 20.11 19.61 17.87 19.40 19.40 18.87 16.88	(ALLUWABLE NET ALLOWABLE LOAD (PSF) ¹ 10 20 30 40 50 60 70 80

				_
$3'' \times 0.030$	× 2 -	- I B F	PS PA	NELS
		AD CD		VDIC)
NET	ΜΔΧ 4		LE SPAN	(FT)
ALLOWABLE				
LOAD (PSF) ¹	L/80	L/120	L/180	L/240
10	20.11	20.03	19.42	18.81
20	19.02	18.81	17.58	16.35
30	17.93	17.58	15.73	13.89
40	16.83	16.35	13.89	11.43
50	15.74	15.12	12.05	8.97
60	14.64	13.89	10.21	6.52
70	13.55	12.66	8.36	4.06
80	12.46	11.43	6.52	1.60
4″ × 0.030	× 2 -	- LB E	PS PA	NELS
	F CLE4	AR SPA	AN CH	1 (2TSA
NET	ΜΔΧ 4		I E SPAN	√ (FT)
ALLOWABLE				/
LOAD (PSF) ¹	L/80	L/120	L/180	L/240
10	24.17	24.17	24.17	24.17
20	23.64	23.64	23.41	23.11
30	22.57	22.57	21.90	21.01
40	21.51	21.51	20.39	18.91
50	20.45	20.45	18.88	16.80
60	19.39	19.39	17.37	14.70
70	18.33	18.33	15.86	12.59
80	17.26	17.26	14.35	10.49
6″ × 0,030	× 5 -	- LB F	.PS PA	NELS
(ALLEWABI	E CLF4	AR SPA	AN CH	ARTS)
NET	MAX. 4	ALLOWAR	LE SPAN	N (FT)
ALLOWABLE				
LOAD (PSF) ¹	L/80	L/120	L/180	L/240
10	24.00	24.00	24.00	23.84
20	23.65	23.65	23.34	22.84
30	22.94	22.94	22.59	21.85
40	22.23	22.23	21.85	20.85
50	21.53	21.53	21.10	19.86
60	20.82	20.82	20.36	18.87
/0	20.11	20.11	19.61	1/.8/
80	19.40	19.40	18'81	16'98
、				
	A			
	H H			
	PANEL			
	DEPTH			
	PANEL			
	PANEL			
Image: Constraint of the section of the sec	PANEL			OPTIONAL GUTTER DF
Image: Constraint of the section of the sec	PANEL DEPTH		1	OPTIONAL GUTTER OF DRIP CAP
A CRUSS SECTION 4' MAX WIDT A MAX MAX MIX A MA		ICKING		OPTIONAL GUTTER OF DRIP CAP
4' MAX WIDT PANEL (1/4',	H INTERLO	ICKING _DPE>		OPTIONAL GUTTER DF DRIP CAP
4' MAX WIDT PANEL (1/4',	H INTERLO		<u>><u></u></u>	OPTIONAL GUTTER DF DRIP CAP
Image: Construction of the second	H INTERLO		0000	OPTIONAL GUTTER DF DRIP CAP
Image: Construction Image: Construction Image: Construction Image: Construction <td>H INTERLO</td> <td></td> <td>00000</td> <td>OPTIONAL GUTTER DR DRIP CAP</td>	H INTERLO		00000	OPTIONAL GUTTER DR DRIP CAP
U O O O O O O O O O O O O O O O O O O O	H INTERLO			OPTIONAL GUTTER DF DRIP CAP
U O O O O O O O O O O O O O O O O O O O	H INTERLO			OPTIONAL GUTTER DF DRIP CAP
CONTRACTORS CONTR				OPTIONAL GUTTER DR DRIP CAP
LOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	H INTERLO		оооооо оооооо н.	OPTIONAL GUTTER OF DRIP CAP

GENERAL NOTES

80

E

- 1. Composite panels shall be constructed using type 3003-H154 aluminum facings, 1 or 2 PCF ASTM C-578 Kingspan Insulation LLC or Imperial Foam & Insulation MFG. CO. brand EPS adhered to aluminum facings with Ashland Chemical 2020D ISO grip. Fabrication to be by Elite panel products only in accordance with approved fabrication methods.
- 2. Elite roof panels maintain a UL 1715 (int) class 'B' (ext) rating and are NER-501 approved.

9.85 9.85 8.43 3.47

- 3. This specification has been designed and shall be fabricated in accordance with the requirements of the Florida Building Code 8th Edition (FBC), composite panels comply with Chapter 7 Section 720, Chapter 8 Section 803, Class A interior finish, and Chapter 26 Section 2603. All local building code amendments shall be adhered to as required.
- 4. The designer shall determine by accepted engineering practice the allowable loads for site specific load conditions (including load combinations) using the data from the allowable load tables and spans in this approval.
- Deflection limits and allowable spans have been listed to meet FBC including the HVHZ. In HVHZ, this product shall be used 5. in structures "not to be considered living areas" per Section 1616 unless impact resistance in accordance to the HVHZ requirements are met.
- 6. Safety factor of 2.0 has been used to develop allowable loads and spans from testing in accordance to the Guidelines for Aluminum Structures Part 1 and conforms to the FBC Chapter 16 and 20.
- Testing has been conducted in accordance to ASTM E72: Strength Test of Panels for Building Construction. 7.
- 8. Reference test reports: HETI-05-1988, HETI-06-2104, HETI-06-2066, HETI-06-2105, HETI-06-2067, HETI-05-1002, HETI-06-2107, HETI-05-1987, HETI-06-2069, HETI-06-2070, HETI-06-2071, HETI-05-1994, HETI-05-1991, HETI-06-2072, HETI-06-2073, HETI-06-2074, HETI-05-1996, HETI-05-1989, HETI-05-1993, HETI-05-1985, HETI-05-1995, HETI-05-1990, HETI-05-1997, HETI-05-2037, HETI-05-2029, HETI-05-2039, HETI-05-2030, HETI-05-2041, HETI-05-2048, HETI-05-2036, HETI-05-2031, HETI-05-2038, HETI-05-2065, HETI-05-2040, HETI-05-2042.
- 9. Linear interpolation shall be allowed for figures within the tables shown.
- 10. Panels with fan beams shall be considered equivalent to similar panels without fan beams. Design professionals may include the strength of the fan beam to exceed shown figures as part of site-specific engineering.

SEAL JOINT WITH -CONTINUOUS CAULKING 70000 00000)0000 0000 INTERLOC

EPS ROOF PANEL/ SPAN DESCRIPTION

DRAWN BY: CHECKED BY: SCALE: DATE:

SHEET 1 OF 2

DO KIM & ASSOCIATES, LLC CONSULTING STRUCTURAL ENGINEERS PO BOX 10039 Tampa, FL 33679 Tel: (813) 857-9955 Rev./Date Description 8/12 ISSUED FOR FBC 2017 Edition PRODUCT APPROVAL ISSUED FOR FBC 7tl A 8/8 2020 Edition PRODUCT APPROVAL 6/15 ADDED LABE 2022 STATEMENT 6/15 ADDED LABELING ISSUED FOR FBC 8 8/15 2023 Edition PRODUCT APPROVAL FOAM CORE COMPOSITE PANELS ALUMINUM/ALUMINUM SKIN DA STATEWIDE PRODUCT APPROVAL Elite Aluminum Corporation 4650 Lyons Technology Parkway Coconut Creek, FL 33073 FLORIDA EPS DYK DYK AS SHOWN 2/19/12 DOKIM & ASSOCIATES 4 Drawing No. - FL-1001

ELITE ALUMINUM PANELS ARE LABELED WITH A FL7561 LABEL TO ENSURE BUILDING INSPECTOR THAT THE INSULATED PANELS INSTALLED ARE APPROVED FOR USE IN THE STATE OF FLORIDA.

8th Edition FBC Basic Design Wind Speed and Allowable Design Wind Pressure for Attached Covers (canopies) on Buildings.

Attached Covers (canopies) on Buildings

Per 8th Edition FBC Chapter 16 for Components and Cladding Loads, ASCE/SEI 7-22 Chapter 30 for Components and Cladding for Attach Canopies on Buildings. Effective area for wind load calculations based on 10 sq. feet (absolute value of controlling design wind pressure is shown on span tables).

Use the wind load design pressures in the tables below for OPEN and ATTACHED covers (canopies) on buildings as a guide to determine allowable wind load design pressures. Use the design pressure selected to determine the allowable spans for the various panel types listed on Sheet 1.

The tables below ONLY applies to open and attached covers (canopies) on buildings per ASCE/SEI 7-22 Section 30.9 ATTACHED CANOPIES ON BUILDINGS and shall not be used for any other types of structures such as Enclosed, Freestanding Open, Partially Open, or Partially enclosed Buildings.

Roof covers attached to fascia are deemed 0.9 < hc/he < 1.

Roof covers attached to the host structure underneath the fascia and overhang at deemed $0.5 \le hc/he < 0.9$.

ASCE 7-22 Allowable Design Pressures			
<u>ATTACHED TO FASCIA CANOPIES (Open Wind Flow), 0.9≤hc/he≤1</u>			
Wind Speed	Exposure B	Exposure C	Exposure D
110	10.7	15.98	19.36
120	12.8	19.02	23.04
130	15.0	22.32	27.04
140	17.4	25.88	31.37
150	19.9	29.71	36.01
160	22.7	33.81	40.97

ASCE 7-22 Allowable Design Pressures			
ATTACHED TO WALL CANOPIES (Open Wind Flow), 0.5 <hc he<<="" th=""></hc>			
Wind Speed	Exposure B	Exposure C	Exposur
110	6.9	10.27	12.45
120	8.2	12.23	14.81
130	9.6	14.35	17.39
140	11.2	16.64	20.16
150	12.8	19.10	23.15
160	14.6	21.73	26.34

Notes:

The allowable design pressures listed in the tables are the absolute value of the controlling design pressure $(\pm dp)$. 1.

DO KIM & ASSOCIATES, LLC CONSULTING STRUCTURAL ENGINEERS PO BOX 10039 Tampa, FL 33679 Tel: (813) 857-9955 Description Rev./Date 8/12 2017 Edition PRODUCT APPROVAL ISSUED FOR FBC 7tl A 2020 ISSUED FOR FBC APPROVAL 6/15 ADDED LABE 6/15 ADDED LABELING ISSUED FOR FBC 8t 8/15 Edition PRODUCT 2023 APPROVAL APPROVAL EPS FOAM CORE COMPOSITE PANELS ALUMINUM/ALUMINUM SKIN FLORIDA STATEWIDE PRODUCT APPROVAL Elite Aluminum Corporation 4650 Lyons Technology Parkway Coconut Creek, FL 33073 xposure D DRAWN BY: DYK CHECKED BY: DYK SCALE: AS SHOWN DATE: 2/19/12 DOKIM & ASSOCIATES . Drawing No. - FL-1001

SHEET 2 OF 2

12.45 14.81 17.39 20.16 23.15 26.34

DO KIM & ASSOCIATES, LLC Consulting Structural Engineers

Florida Board of Engineers Certificate of Authorization No. 26887

Product Evaluation Report

Date:	August	15, 2023
Report No.:	FL# 75	61-R7
Product Catego	ry:	Roofing
Product sub-cat	egory:	Products Introduced as a Result of New Technology
Product Name:		EPS Foam Core w/ Aluminum Skin Composite Panels
Manufacturer:		Elite Aluminum Corporation 4650 Lyons Technology Parkway Coconut Creek, FL 33073 Phone: 800-421-0682

Scope:

This product evaluation report issued by Do Kim and Associates, LLC and Do Kim, P.E. for Elite Aluminum Corporation is based on Florida Department of Business and Professional Regulation Rule 61G20-3.005 (2) Method 2 (b) of the State of Florida Product Approval. Re-evaluation of this product shall be required following pertinent Florida Building Code modifications or updates.

Do Kim and Associates, LLC and Do Kim, P.E. do not have nor will acquire financial interest in the company manufacturing or distributing the product or in any other entity involved in the approval process of the product named herein.

This product has been evaluated for use in locations adhering to the Florida Building Code, 8th Edition (2023 FBC) and where pressure and deflection requirements, as determined by Chapter 16 of the Florida Building Code, do not exceed the design pressures as shown on the approval.

DO KIM & ASSOCIATES, LLC CONSULTING STRUCTURAL ENGINEERS

LING STRUCTURAL ENGINEERS

Supporting Documents

- 1. Code Compliance
 - a. The product assembly described herein has demonstrated compliance with the Florida Building Code 8th Edition (FBC), Section 1708.2.
- 2. Drawings:
 - a. Drawing No. FL-1001 titled "EPS Foam Core Composite Panels", Sheets 1 and 2 prepared by Do Kim and Associates, LLC., signed and sealed by Do Kim, P.E.
- 3. Testing
 - a. Testing per ASTM E72 as performed by Hurricane Engineering & Testing, Inc. (HETI), and reported in test report numbers HETI-05-1988, HETI-06-2104, HETI-06-2066, HETI-06-2105, HETI-06-2067, HETI-05-1002, HETI-06-2107, HETI-05-1987, HETI-06-2069, HETI-06-2070, HETI-06-2071, HETI-05-1994, HETI-05-1991, HETI-06-2072, HETI-06-2073, HETI-06-2074, HETI-05-1996, HETI-05-1989, HETI-05-1993, HETI-05-1985, HETI-05-1995, HETI-05-1990, HETI-05-1997, HETI-05-2037, HETI-05-2029, HETI-05-2039, HETI-05-2030, HETI-05-2041, HETI-05-2048, HETI-05-2036, HETI-05-2031, HETI-05-2038, HETI-05-2065, HETI-05-2040, HETI-05-2042.
- 4. Calculations
 - a. Panel performance engineering analysis for tested loading conditions have been prepared based on comparative and/or rational analysis, prepared, and submitted by Do Kim, P.E.
- 5. Other
 - a. Quality Assurance Agreement verified with Quality Auditing-Institute, LTD. (QAI Laboratories, LTD.) (FBC Organization #QUA7628).

DO KIM & ASSOCIATES, LLC CONSULTING STRUCTURAL ENGINEERS

Limitations and Condition of Use

- 1. Code Compliance
 - a. The product assembly described herein has demonstrated compliance with the Florida Building Code 8th Edition (FBC), Section 1708.2.
- 2. Large and small missile impact resistance has NOT been tested to or evaluated for in this approval. In HVHZ, this product shall be used in structures "not to be considered living areas" per Section 1616 unless impact resistance in accordance to the HVHZ requirements are met.
- 3. Each product listed above shall be installed in strict compliance with its respective Product Evaluation Document and site-specific engineering along with all components noted herein.
- 4. Use of each product shall be in strict accordance with its Product Approval Evaluation and Limitations of Use.
- 6. Composite panels shall be constructed using type 3003-H154 or 3105-H154 aluminum facings, 2 PCF ASTM C-578 Kingspan Insulation LLC brand EPS foam insulation (NOA No. 22-0627.04) or Imperial Foam & Insulation MFG. CO. adhered to aluminum facings with Ashland Chemical 2020D ISO grip. Fabrication to be by Elite panel products only in accordance with approved fabrication methods.
- 7. Elite roof panels maintain a UL 1715 (int) class 'B' (ext) rating and are NER-501 approved.
- 8. This specification has been designed and shall be fabricated in accordance with the requirements of the FBC, composite panels comply with Chapter 7 Section 720, Chapter 8 Section 803, Class A interior finish, and Chapter 26 Section 2603. All local building code amendments shall be adhered to as required.
- 9. The designer shall determine by accepted engineering practice the allowable loads for site specific load conditions (including load combinations) using the data from the allowable load tables and spans in this approval.
- 10. Deflection limits and allowable spans have been listed to meet FBC including the HVHZ (L/80 for spans ≤ 12 '-0" and L/180 for spans > 12'-0").
- 11. All supporting host structures shall be designed to resist all superimposed loads.
- 12. All components which are permanently installed shall be protected against corrosion, contamination, and other such damage.
- 13. Size and Span Limitations:
 - a. Composite panels shall be limited to those specific panels listed in the DWG. FL-1001.
 - b. Panel spans shall not exceed those listed in the tables of DWG. FL-1001.
- 14. ELITE ALUMINUM PANELS ARE LABELED WITH A FL7561 LABEL TO ENSURE BUILDING INSPECTOR THAT THE INSULATED PANELS INSTALLED ARE APPROVED FOR USE IN THE STATE OF FLORIDA.