

BROWARD REGIONAL COMPREHENSIVE SAFETY ACTION PLAN

Priority Corridor ReportTaft Street, NW 70th Terrace to US 441/SR 7

September 2025

CONSULTANT TEAM

TABLE OF CONTENTS

1 CORRIDOR SELECTION AND SAFE SYSTEM APPROACH	······································
1.1 CONCEPT DESIGN PROCESS	
1.2 DESIGN APPROACH	
2 EXISTING CORRIDOR CONDITIONS & SAFETY ANALYSIS	
2.1 CORRIDOR OVERVIEW	
2.2 RELATED PLANS AND PROJECTS	
2.3 SAFETY ANALYSIS	
3 AGENCY AND PUBLIC INVOLVEMENT	S
3.1 ROAD SAFETY ASSESSMENT	
3.2 INITIAL PUBLIC MEETING	1
3.3 STAKEHOLDER COORDINATION	
3.4 FINAL PUBLIC MEETING	
4 BSAP CORRIDOR RECOMMENDATIONS	
4.1 CORRIDOR OPPORTUNITIES AND CONSTRAINTS	
4.2 CORRIDOR DESIGN CONCEPT	
4.3 COST ESTIMATE	2
4.4 FHWA SAFE SYSTEM SCORING EVALUATION	22
4.5 BENEFIT COST ANALYSIS	24
4.6 NEXT STEPS	25
APPENDICES	26

Broward Safety Action Plan (BSAP)

FIGURES

Figure I: Project Concept Design Process	
Figure 1: Project Concept Design Process Figure 2: KSI Crashes by mode Figure 3: Crash heatmap of all crashes Figure 4: Safety Analysis Board	5
Figure 3: Crash heatmap of all crashes	5
Figure 4: Safety Analysis Board	6
Figure 5: Crash Diagram Boards	7
Figure 5: Crash Diagram BoardsFigure 6: Corridor Demorgraphics Board	8
TABLES	
Table 1: 2-lane vs. 4-lane traffic analysis, years 2024 and 2044	16
Table 1: 2-lane vs. 4-lane traffic analysis, years 2024 and 2044 Table 2: Short Term Recommendations	17
Table 3: Long Term Recommendations for Preferred Concept	18
Table 4: Cost Estimate for Preferred Concept	27
Table 5: Safe System Assessment Scoring TypesTable 5: Safe System Assessment Scoring Types	22
Table 6: Taft Street Safe System Alignment Scores	23
Table 7: Benefit Cost Assessment Summary for Preferred Concept	25

APPENDICES

Appendix A: RSA

Appendix B: Initial Public Meeting

Appendix C: Final Public Meeting

Appendix D: Traffic Data and Analysis

Appendix E: Countermeasures Boards

Appendix F: Cost Estimate Details

Appendix G: Benefit Cost Analysis Backup

Appendix H: 2-Lane Design Concept- Alternative Concept Design

1 CORRIDOR SELECTION AND SAFE SYSTEM APPROACH

Strategy and project selection are key components of a successful Safe Streets and Roads for All (SS4A) Safety Action Plan, as outlined by the Federal Highway Administration (FHWA). The Broward Regional Comprehensive Safety Action Plan (BSAP) strategy and project selection process is grounded in a data-driven prioritization framework. A three-tiered scoring matrix was used to identify and prioritize projects within the BSAP, utilizing the High-Injury Network, High-Risk Network, and Demographics Analysis. By using this approach, the Broward region can strategically allocate limited resources to address the most critical needs, thereby advancing our shared regional safety goal of eliminating killed and serious injury (KSI) crashes to zero by the year 2050. Within the Broward Safety Action Plan, eleven corridors were prioritized to move into conceptual design based on prioritization score while also delivering concepts within a mix of context classifications, roadway owners, cities, and number of lanes which did not have any programmed improvements planned. The eleven priority corridors are:

- 1. US441/SR7, Davie Boulevard to Sunrise Boulevard
- 2. Broward Boulevard (SR 842), I-95 to NW 1st Avenue
- 3. Stirling Road (SR 848), I-95 to US1/Federal Highway
- 4. NW 31st Avenue, NW 8th Place to McNab Road
- 5. West Broward Boulevard, Central Park Drive to University Drive
- 6. NW 19th Street, NW 43rd Terrace to NW 31st Avenue
- 7. NW 6th Street/Sistrunk Boulevard, NW 27th Avenue to N Andrews Avenue
- 8. Royal Palm Boulevard, Riverside Drive to US 441/ SR 7
- 9. Rock Island Road, Southgate Boulevard to Royal Palm Boulevard
- 10. Taft Street, NW 70th Terrace to US 441/SR 7
- 11. SW 10th Street, I-95 to Dixie Highway

This report is prepared to specifically describe the overall conceptual design development process for the Taft Street Priority Corridor.

1.1 CONCEPT DESIGN PROCESS

This corridor went through a collaborative, data-driven approach to balance the safety needs with the needs of all the stakeholders. Shown in **Figure 1**, the process initiated in January 2024 and will conclude in November 2025 with amendment to the BMPO Metropolitan Transportation Plan (MTP) to include these corridors. Each corridor package includes the design concept, cost estimates, and supporting data to allow programming of these corridors for design and construction.

FIGURE 1: PROJECT CONCEPT DESIGN PROCESS

1.2 DESIGN APPROACH

Conceptual design for 11 BSAP Priority Corridors includes planning level design plans and estimates to create engineering solutions to achieve zero fatalities and serious injuries on our streets using the Safe System Approach. Additionally, FHWA Safe System Roadway Design Hierarchy and Tiers of Improvements were utilized. Each corridor considered reactive considerations based on crash history, and proactive considerations based on risk factors as well as the BSAP focus plan outcomes from the Lighting Safety Action Plan, Rail Safety Action Plan, Midblock Safety Action Plan, Pedestrian and Bicycle Safety Action Plan, School Zone & Bus Stop Safety Action Plan, Technology Safety Action Plan, and Safe Speeds Action Plan. Target Speeds were assigned based on best practices for the context of the corridor. One of the key principles of the Safe System Approach for these designs is "Redundancy is Crucial."

Each of the corridor concept designs was informed by data to include:

- Corridor Safety Analysis, 2019-2023 Signal Four Analytics Data
- Corridor Demographics Analysis, BMPO Indicators
- Corridor KSI Crash Diagrams, 2019-2023 (Signal Four Analytics Crash Reports)
- Corridor Speed/Volume field counts weekday and weekend
- Multi-disciplinary Road Safety Assessment
- Initial Public Meeting to understand the public's safety concerns
- Final Public Meeting to discuss proposed countermeasures
- Two stakeholder review meetings and several rounds of stakeholder review comments

Additionally, the design approach included the following considerations:

- No new right-of-way acquisition
- Initial traffic analysis for lane reassignment, turn lane length reduction, and roundabout feasibility

Three key approaches have been adopted in the Broward Safety Action Plan:

- Speed management is key to reducing severe crashes. Adopted target speeds aligned with context to achieve safer speeds aligned with the Safe System Approach.
- Visibility improvements to reduce severe crashes at night. Improved lighting to meet national best practices, illuminate crosswalks, and adjacent paths/trails to reduce risk.
- Aligned midblock crosswalks with transit stops. Implementation of new midblock crosswalks to align and serve pedestrians using transit to inform vehicular expectations and create spaces for safe crossings.

2 EXISTING CORRIDOR CONDITIONS & SAFETY ANALYSIS

2.1 CORRIDOR OVERVIEW

Taft Street is a 0.8-mile-long corridor owned and maintained by the City of Hollywood. The corridor limits are between N 70th Terrace and SR 7 (US 441). The segment N 70th Terrace to N 64th Ave is within the High-Injury Network and High-Risk Network segment spans from N 68th Avenue to SR 7. The corridor is a corridor is a five-lane facility with two travel lanes in each direction and a continuous two-way left-turn lane (TWLTL) classified as an Urban Major Collector with a posted speed of 35 MPH and a minimum right-of-way-width of 70 feet according to the Broward County Trafficways Plan. There is an existing curb and gutter and enclosed drainage with attached 5-foot sidewalks along both sides of the corridor. The corridor has a context classification of C4 -Urban General. Traffic volumes and 85th percentile speed were measured in September 2024 to be 15,200-18,800 vehicles per day (vpd) and 46 mph weekday/ 47 mph weekends. Broward County Transit runs along this corridor and has ten bus stops within the project limits. Speed data was collected on the corridor in August 2024, shown in **Appendix D**.

2.2 RELATED PLANS AND PROJECTS

The Taft Street Mobility Improvements are being constructed in 2026 along Taft Street east of SR7/ US 441 to include pedestrian and bicycle improvements.

2.3 SAFETY ANALYSIS

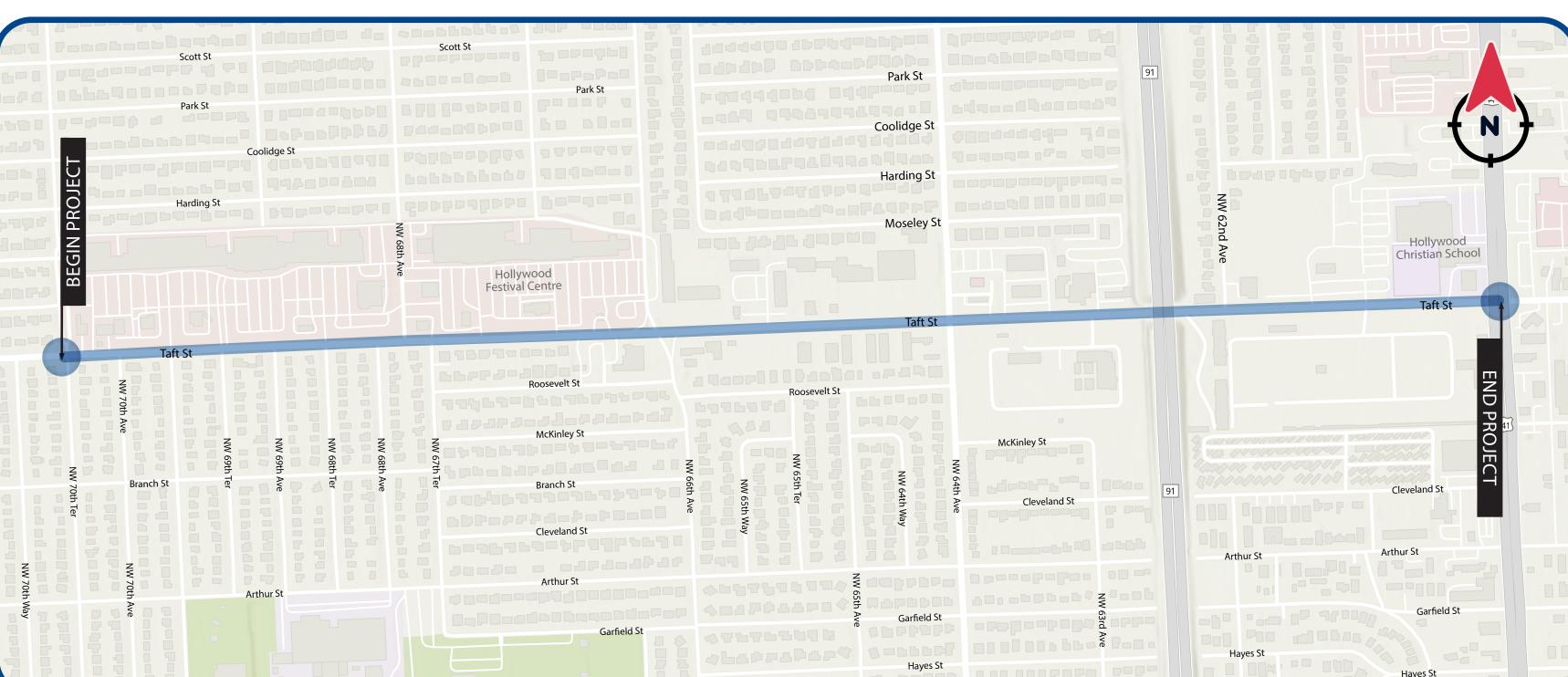
Using Signal Four Analytics, historical crash data for the most recent five years of data, January 2019 through December 2023, was analyzed. Hard-copy police reports were reviewed for all fatal and serious injury crashes (KSI crashes), and the crashes were plotted and summarized in **Figure 2**, **Figure 3**, **Figure 4**, **and Figure 5**. Demographics analysis from 2018-2022 is included in **Figure 6**. During the analysis period, the study segment experienced a total of 415 crashes of which 8 involved a KSI outcome. The most frequent KSI crash types during the analysis period were bicycle (38%), left-turn crashes (37%), angle (13%), and rear-end crashes (12%).

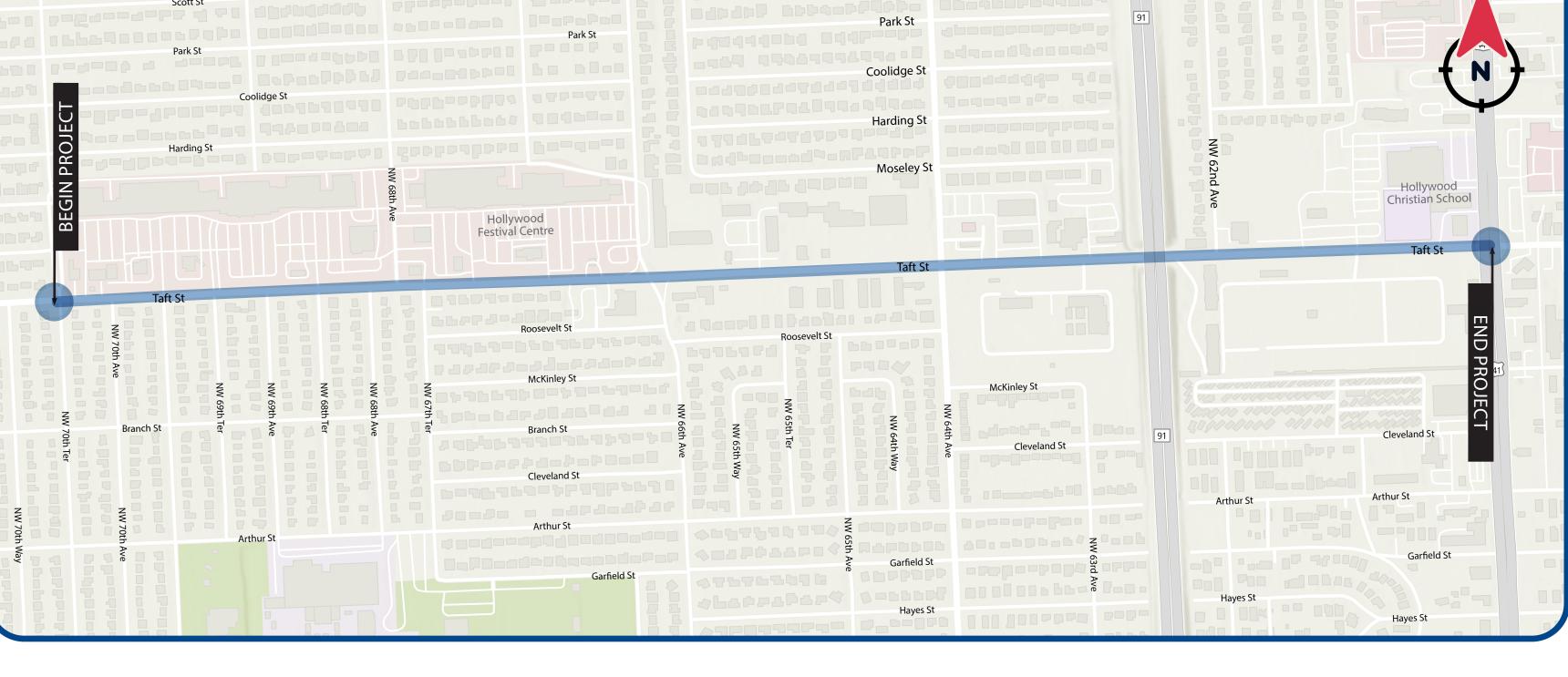
Hollywood Palms Shopping Center

Roosevelt St. Roosevelt S

FIGURE 3: CRASH HEATMAP OF ALL CRASHES

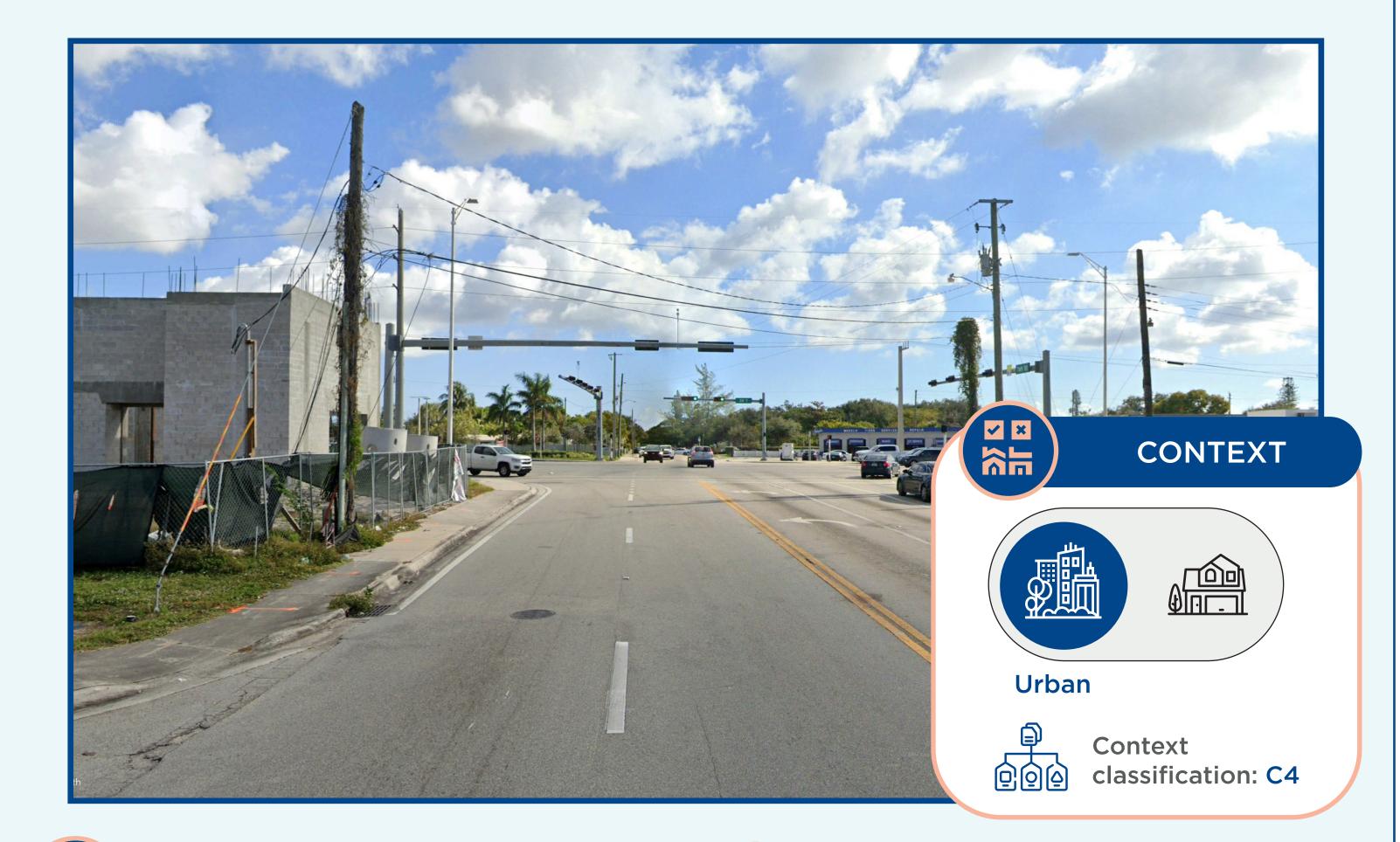
5


KSI BY MODE *people involved


TAFT STREET NW 70TH TERRACE TO SR 7 (US 441) CORRIDOR SAFETY ANALYSIS SUMMARY

50% Bicycle | 50% vehicle

6 serious injuries



33% Bicycle | 17% motorcyclist | 50% vehicle

TOTAL CRASHES BY YEAR (2019-2023) TOTAL ECONOMIC IMPACT* **(\$)** \$41,343,940 KSI PER YEAR (2019-2023) 2019 2020 2021 2022 2023 TOTAL ECONOMIC IMPACT* **(\$)** \$27,108,180

Number of lanes: 5

Number of transit stops: 10

Functional classification: Urban Major Collector

TRAFFIC CONDITIONS

35 mph

Weekday Actual Speed (85th Percentile): 46 mph

Weekend Actual Speed (85th Percentile): 47 mph

Analysis period: 2019-2023

CRASHES RESULTING IN A KSI

Weekdays

1%

Weekends

Sa/Su

1%

CO—O—O Saturday

< 1% of crashes resulting in a KSI

Analysis period: 2019-2023

66% Crashes at

intersection

34% Crashes not at intersection

Analysis period: 2019-2023

POTENTIAL CONTRIBUTING FACTORS (ALL CRASHES)

Analysis period: 2019-2023

roads

9% On wet roads

BEHAVIORAL FACTORS

ENVIRONMENTAL FACTOR

Distracted

driving

1% Alcohol/Drugs

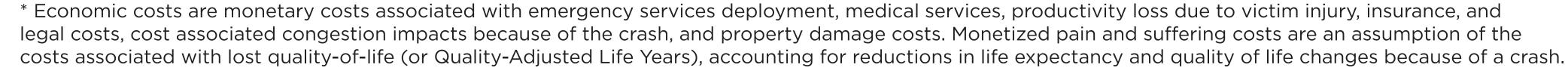
Speeding / Aggressive driving

1%

Analysis period: 2019-2023

TYPE:

CRASH (KSI CRASH


3

Analysis period: 2019-2023

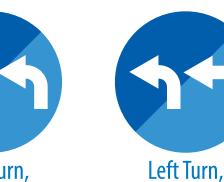
TAFT STREET

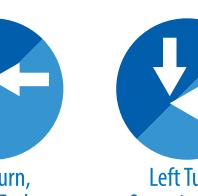
NW 70TH TERRACE TO SR 7 (US 441)

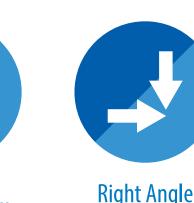
KSI Crash Diagram (2019-2023)(Source: Signal Four Analytics)



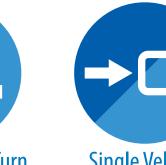
CRASH TYPES



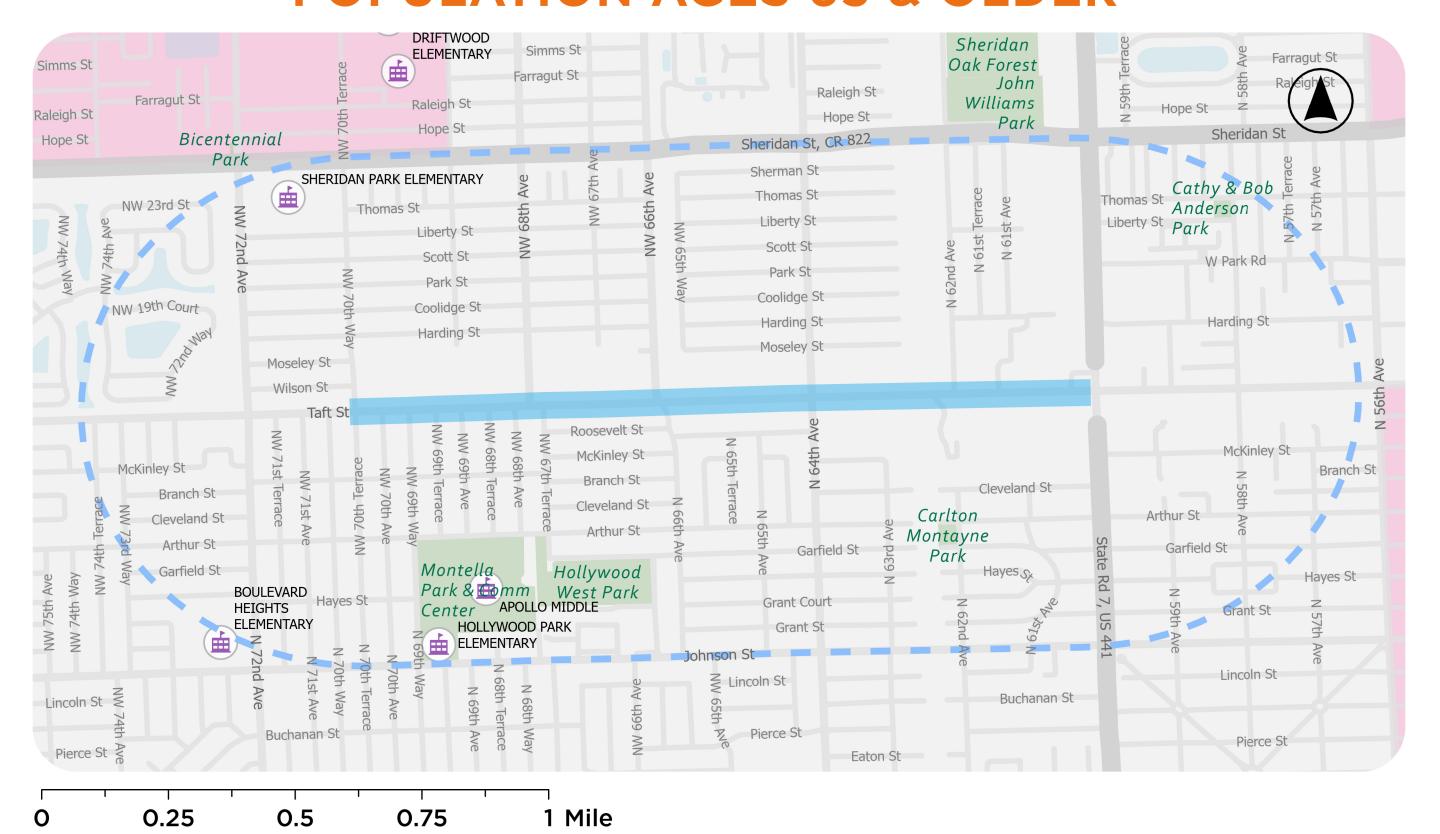


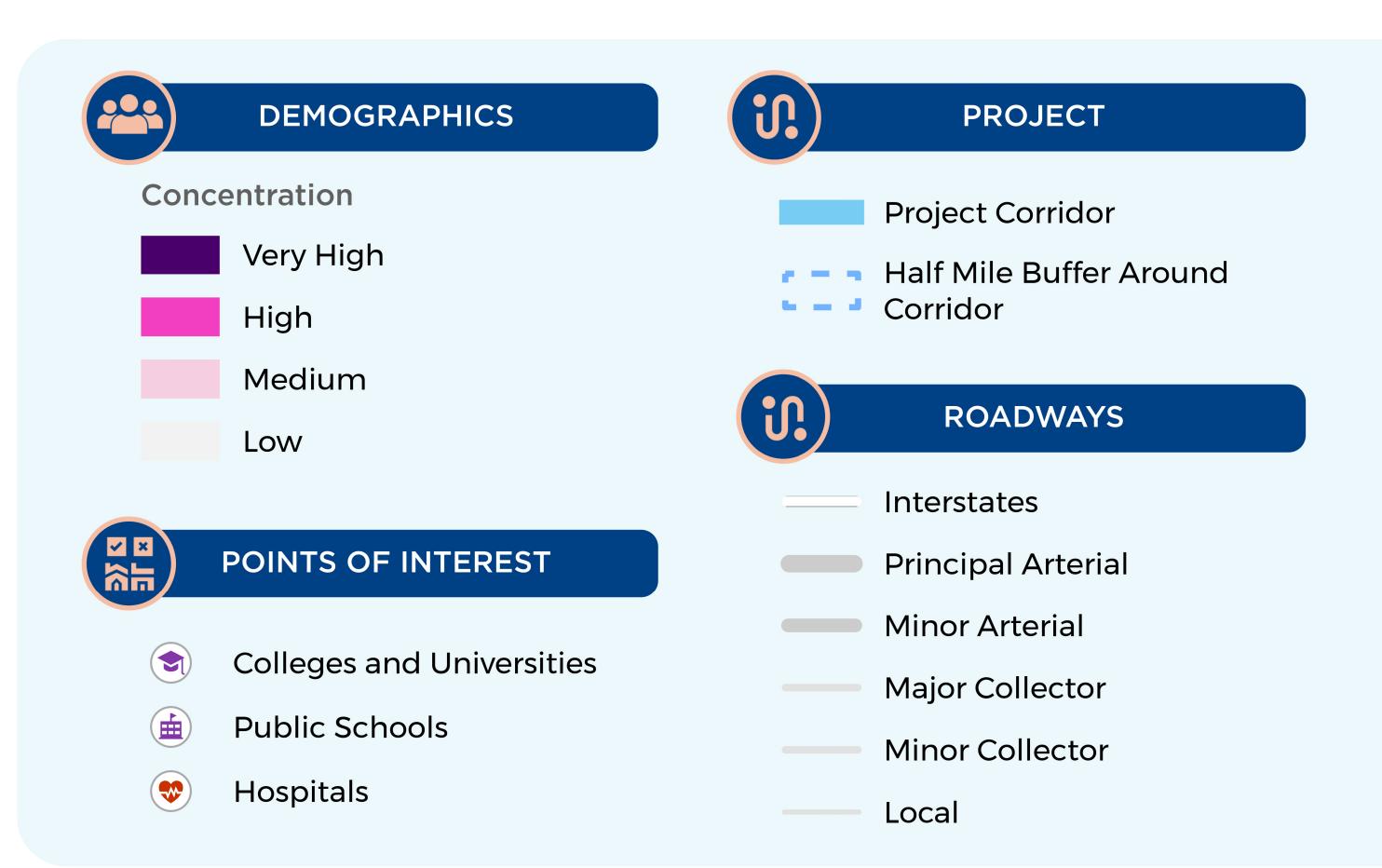






Wel ed actions		Opposite Direction	SEVERITY OF	ENVIRONMENTAL	BEHAVIOR	COLCUTYOR	Right Sideswipe Left with Sideswipe with Parked Car Than Parked Car Pedestrian Bicycle Pedestrian
KSI CRASH NO.	DATE - TIME OF CRASH	MODE	CRASH	FACTORS	FACTORS	CRASH TYPE	CRASH SUMMARY
1	9:25 PM	Motor Vehicle	Severe Injury	Wet/Night			NB Vehicle made illegal U-turn and struck WB Vehicle.
2	2:20 PM	Bicycle	Severe Injury	Dry/Day			WB Vehicle was passing slower WB vehicle and struck NB bicycle crossing Taft from the center turn lane (not in crosswalk).
3	9:13 PM	Motor Vehicle	Severe Injury	Dry/Night	S		EB Vehicle turning left from the center turn lane was struck by WB Vehicle travelling at a high rate of speed.
4	8:04 PM	Bicycle	Fatality	Dry/Night	DR		WB Vehicle struck Bicycle travelling NW across Taft. Bicyclist ran the red light and tested positive for cocaine.
5	8:12 PM	Motorcycle	Severe Injury	Dry/Night	S		WB Motorcycle travelling at a high rate of speed struck vehicle turning left from the center turn lane heading to the Fresco Supermarket.
6	11:21 PM	Motor Vehicle	Fatality	Dry/Night	AR/DR/S		EB Vehicle travelling at a high rate of speed struck EB vehicle in front causing that vehicle to hit a third. First vehicle veered off and hit a fourth. First vehicle driver tested positive for cocaine.
7	5:59 PM	Bicycle	Severe Injury	Dry/Day			EB Vehicle struck SB Bicycle crossing Taft not in a crosswalk.
8	5:13 PM	Motor Vehicle	Severe Injury	Dry/Day			WB Vehicle turning left from left turn lane was struck by Vehicle 2 travelling EB and pushed Vehicle 1 into a third vehicle stopped facing NB. Vehicle 2 had the right of way.


SAFESTREETS
4 BROWARD
Powered by The Broward MPO & Broward County


SafeStreets4Broward.org

POPULATION AGES 65 & OLDER

YOUTH AGES 10 TO 17 YEARS


BELOW POVERTY POPULATION

AREAS OF PERSISTENT POVERTY*

ETHNIC MINORITY

PEOPLE WITH DISABILITIES

RACIAL MINORITY

About the Maps

The demographic analysis identifies block groups with low, medium, high, and very high concentrations of populations for each of the seven demographic indicators.

The purpose of the demographic analysis is to inform the development of recommendations addressing the needs of communities. Comparing a variety of indicators shows the kind and depth of needs a project corridor might have when it comes to traffic safety.

Sources: US Census 2022 ACS, SS4A Underserved Communities Tool, Broward County GeoHub, BSAP Roadway Centerline Network.

Read more at SafeStreets4Broward.org

3 AGENCY AND PUBLIC INVOLVEMENT

3.1 ROAD SAFETY ASSESSMENT

A corridor specific Road Safety Assessment (RSA) was completed on October 1, 2024 to document deficiencies that could impact safety and mobility along the corridor. The RSA, through its collaborative and onthe-ground nature with a multi-disciplinary team of practitioners, is intended to reveal issues and opportunities that may not be otherwise evident through traditional data collection methods. Field materials were provided ahead of the RSA to include a summary of crashes, prompt lists and questions, and aerial maps. Following a briefing on the RSA goals and safety protocols, participants split into two groups to walk the study segment, pausing at numerous locations to discuss observations and insights. The RSA was completed on a typical weekday, so the findings are understood to represent a snapshot of the typical travel patterns and user behavior. The stakeholders that attended the RSA included:

- · City of Hollywood Engineering Department
- · City of Hollywood Police Department
- Broward County
- Broward MPO
- AARP
- Consultant Team

All materials and notes from the Road Safety Assessment are included in Appendix A.

Below are issues highlighted and discussed during the RSA but do not capture every possible observation.

Bicycle Facilities: No bike facilities exist along the Taft Street corridor. During the RSA, many people were observed riding on the sidewalks in both directions with pedestrians having to move out of the way to allow bicyclists to pass.

Crosswalks: Crosswalks are only provided at signalized intersections which have a spacing of approximately ¼-mile to ½-mile between crossings. During the RSA pedestrians were observed crossing midblock. One family was also observed walking down the two-way left turn lane before crossing. On driveways or cross streets, crosswalks are not striped.

Sidewalks: Sidewalks existing along both sides of Taft Street are minimum width and directly adjacent to high-speed traffic lanes. There is no existing sidewalk along the south side of Taft Street from N. 64th Avenue to US441/ SR7. There were instances where the sidewalks would narrow or where there were encroachments by vehicles parked on the sidewalk, utilities, and/or overgrown vegetation. Participants reported feeling like the effective width of the sidewalk was narrower than five feet due to their proximity to adjacent travel lanes.

Lighting: Lighting fixtures are provided intermittently on the north side of the street with many areas along Taft Street not appearing to be adequately lit and several areas along the segment where light fixtures are provided but light bulbs are out. The area under the Florida Turnpike bridge had limited lighting.

Signage/Marking/Signals: All the striping and signage were faded and not highly retroreflective. It was observed that signal heads without retroreflective backplates and crosswalks without high visibility markings.

3.2 INITIAL PUBLIC MEETING

An initial public meeting was held on Tuesday, October 1, 2024 at the Boulevard Heights Community Center in the City of Hollywood, FL. The purpose of this meeting was to share the project intent, goals, and opportunities with the communities along Taft Street and to hear directly from them about their safety concerns in the corridor. The meeting was held from 6:00 PM to 7:30 PM. A 15-minute presentation included an overview of the project opportunity, safety education, safety analysis, safety analysis, how to stay involved in the project, and a request for comments from attendees. Following the presentation, attendees were invited to share safety concerns at specific locations which were marked and noted on large aerial maps. Attendees were provided with three ways to share comments - comment cards, verbal comments added to maps on sticky notes or adding them to the website map online.

This meeting was attended by 10 people plus City, County, and BMPO staff. Summary of public comments include:

- Eastbound lane assignment confusion approaching US 441
- Private school traffic congestion in mornings/afternoons west of US 441
- Need sidewalks along Hollywood Memorial Gardens
- Need more midblock crosswalks, especially at grocery store
- Need shade for sidewalks
- Permissive lefts are confusing, need protected left turns
- Need traffic calming as speeds increase throughout corridor
- Increase street lighting- very dark corridor
- Request separated bike facilities

All initial public meeting materials are included in Appendix B

3.3 STAKEHOLDER COORDINATION

Three stakeholder coordination meetings were held for each priority corridor in addition to the public meetings to include:

- 1. Corridor Kick-off Meeting (August 2024): This initial meeting brought together all the stakeholders associated with the corridor to discuss the goals of the Broward Safety Action Plan to create a safer corridor. The discussion included an overview of the Safe System Approach, existing transportation infrastructure review, corridor crash analysis, and corridor demographic analysis. The project schedule was presented along with the expected project deliverables.
- 2. Countermeasures Map Discussion #1 (November 2024) This second meeting of project stakeholders followed the public meeting and road safety assessment to review the outcomes within those two events and present the initial proposed safety countermeasures. Proposed countermeasures at specific locations along the corridor were presented for review and discussion. Countermeasures were presented as to how they address the issues observed in the road safety assessment, safety concerns gathered from the public meeting, or issues analyzed through crash analysis and crash diagrams. Following this meeting, the information discussed was provided to all the stakeholders for a review period of two weeks.
- 3. Countermeasure Map Discussion #2 (December 2024) Meeting included a summary of the comments received from stakeholders and a review of the updates to the proposed countermeasures based on the previous meeting. Further clarification of the proposed countermeasures was discussed as well as the process to present the concepts to the public in Spring 2025.

Following these three meetings, the proposed priority corridor concept design was completed. Prior to the final public meeting in February 2025, concept designs were shared with all stakeholders for further review and comment opportunity. Stakeholder comments were provided and integrated into the final corridor concept design included in Chapter 4.

Stakeholders will work directly with the Broward MPO staff to integrate this priority corridor into the 2050 Metropolitan Transportation Plan (MTP) in Fall 2025 to support further design and implementation of these safety concepts.

3.4 FINAL PUBLIC MEETING

The final public meeting for this priority corridor was held on Monday February 10, 2025 at the Boulevard Heights Community Center in the City of Hollywood, FL. This meeting focused on presenting the corridor safety improvements to meet the safety needs identified through safety data analysis and public safety concerns. The meeting was held from 6:00 PM to 7:30 PM. A 15-minute presentation included an overview of the crash statistics, the design approach to redundant layers of safety, a review of the major findings of the BSAP, a review of the initial public meeting comments and a request for comments from attendees. Following presentation, project leaders presented the proposed improvements within a design roll plot of the corridor and requested feedback and comments. Attendees were provided with three ways to share comments- comment cards, verbal comments added to maps on sticky notes or adding them to the website map online. The materials presented at the meeting included:

- Project overview presentation
- Preliminary Safety Corridor Concept Roll Plot
- Corridor Safety Analysis Board
- Safety Countermeasures Boards with over 40 safety countermeasures presented (Appendix E)
- Proposed Typical Section Board

This meeting was attended by 12 people plus City, County, and BMPO staff. Safety information pamphlets and safety bracelets, bike lights, and reflective bags were provided to attendees.

All final public meeting materials are included in Appendix C.

4 BSAP CORRIDOR RECOMMENDATIONS

Based on the analysis of existing conditions along the corridor, the project team identified several opportunities and constraints to consider in the development of recommendations.

4.1 CORRIDOR OPPORTUNITIES AND CONSTRAINTS

Several opportunities were identified for considerations to improve safety for all modes of transportation:

- Travel speeds along the corridor can be better managed through design elements aiming at a target speed of 30 MPH.
- Context Classification C4 Urban General, existing to remain.
- Given the current and projected traffic along the corridor, there was an opportunity to repurpose the existing 5-lane section to a 3-lane with a center median and urban side paths and landscaping on either side. This repurposing also would allow for the consideration of roundabouts at several currently signalized intersections. Traffic analysis to support these improvements is included in **Appendix D**. Alternative Concept Design for 2-lane is included in **Appendix H**.
- If the repurposing is not selected to move into design, there is an opportunity to add spot medians to better control the turning movements and add refuge for several midblock crossings along the corridor.
- There is an opportunity to narrow lanes to 10' inside width and 11' outside width to aid in achieving the target speed of 30mph.

The study corridor also has some existing design constraints to be considered:

- Right of way constraints at several locations along the corridor make the construction of roundabouts without right of way difficult. The city has redevelopment opportunities at the intersection of N. 66th Avenue.
- There was some opposition to the lane repurposing at this time, a four-lane alternative is shown in Chapter 4, and the two-lane alternative is included in Appendix D.
- There are several existing business driveways that currently access Taft within the functional footprint of signalized intersections. However, these driveways either serve as the only ingress/egress, or they allow access to critical parking for the business.
- Drainage and utility conflicts may exist along the corridor that need to be considered in further development of project.

4.2 CORRIDOR DESIGN CONCEPT

The concept plan was developed based on design principles that should be carried through to the design phase of the project. These principles are based on Safe System best practices as of the development of this concept plan (2025). Depending on the timing of the design phase and construction, more recent best practice documents should be consulted to determine if modifications from the concept plan should be considered in consultation with Broward County. The following are the general design principles utilized for developing the proposed concept for Taft Street:

- Remove Severe Conflicts: Eliminate the most severe conflicts between road users, such as providing dedicated facilities for each user group or relocating a utility pole.
- Manage Vehicular Speeds: Reduce the speed of vehicles to align with the context of the roadway, the hazards, and conflicts between roadway users; includes horizontal and vertical deflection elements.
- Manage Conflicts in Time: Where conflicts cannot be removed, can they be separated in time, through signal timing strategies or providing dedicated space for other roadway users.
- Increase Attentiveness and Awareness: Where conflicts cannot be removed, increase attentiveness, and improve the visibility between road users and road hazards.
- Implement Enforcing Features to Slow Traffic: Similar to managing vehicular speeds, these are roadway features that help enforce the desired speed, like speed feedback signs.

The recommendations developed as part of this project are intended to be implemented in two phases: 1) **Short Term** which will allow the community to enjoy some of the benefits of safety measures immediately, while building enthusiasm and support for more permanent infrastructure; and 2) **Long Term Phase** which will build upon the recommendations implemented in the Short-Term phase to provide a safer, more comfortable street for all users.

The recommendations developed as part of this concept were first presented to Broward MPO, Broward County and the stakeholder agencies for review as outlined in Chapter 3.3. Based on the feedback received from the reviewing agencies, the recommendations were revised and presented to the community for feedback in the final public meeting held on February 10, 2025. Most people expressed support for the traffic calming elements along the corridor to slow people driving to provide a safer environment for people walking and biking. Based on the feedback received from the community and discussions with Broward County, the City of Hollywood, and Broward MPO staff, a revised alternative was developed. **Table 1** and **Table 2** summarize the recommendations from the revised alternative. Some of the recommendations will require additional study during the design phase and coordination with the City of Hollywood to ensure compliance with City procedures and standards.

4.2.1 TRAFFIC ANALYSIS FOR ALTERNATIVE CONCEPT

Two concepts were considered for the Taft Street corridor to achieve the project goals of safer streets for the Taft Street corridor. A 4-lane concept (Preferred Concept) and a 2-lane repurposing concept (Alternative Concept). A traffic analysis was conducted only for the Alternative Concept to evaluate its effects. Even though the Alternative Concept is not the Preferred Concept, the following information can be beneficial to determine the appropriate concept during implementation.

Proposed improvement would repurpose the outside lane into a landscape area with shade trees and wide, 12-foot, multiuse path on both sides of the street. This would also allow the shortening of pedestrian crossings and allow for less substantial traffic control devices. Single lane roundabouts were also considered for this corridor to further support the safety goals.

The lane repurposing analysis which utilized the 2023 FDOT Multimodal QLOS Handbook concluded that all intersections and segments within the Taft Street corridor would operate at acceptable levels of service (LOS) for the lane repurposing condition during both the existing year traffic (2024) and the future year traffic (2044). The analysis utilized a conservative annual traffic growth rate of 1% which is higher than the corridor has seen using historical FDOT AADT volumes and higher than the regional transportation (SERPM) model predicts. Zero traffic diversion was modeled to analyze the most conservative or worst-case traffic volume scenario for the corridor.

Intersection delay was conducted using Synchro 12 software for both the morning (AM) and afternoon (PM) peak hour within four scenarios: 1) Existing (2024) No-Build/4-lanes; 2) Existing (2024) Build/2-lanes; 3) Future (2044) No-Build/4-lanes; and 4) Future (2044) Build (2-lanes). The results in **Table 1** show that all intersections will operate at acceptable levels of service within a 2-lane scenario in the future year utilizing zero traffic diversion and a higher than predicted traffic growth percentage.

TABLE 1: 2-LANE VS. 4-LANE TRAFFIC ANALYSIS, YEARS 2024 AND 2044

LOS *	2024 4-lanes	2024 2-Lanes	2044 4-Lanes	2044 2-Lanes
N. 64 th Avenue	C (D)	D (D)	D (E)	E (E)
N. 66 th Avenue	A (B)	B (B)	B (B)	D (C)
N. 68 th Avenue	A (A)	A (B)	A (B)	B (D)
N. 70 th Terrace	A (A)	A (A)	A (A)	A (A)

*PM Peak LOS shown in parenthesis

All the traffic analysis can be found in Appendix D.

TABLE 2: SHORT TERM RECOMMENDATIONS

Lead agency for all recommendations is City of Hollywood unless otherwise noted.

LOCATION	RECOMMENDATION	INTENDED BENEFIT		
Corridor-wide	Perform maintenance of existing lighting	Improve visibility and awareness at night		
Corridor-wide	Reduce target speed and posted speed to 30 MPH	Reduce speeding. This also allows for certain countermeasures that would not be allowed at 35 MPH		
Corridor-wide* Consolidate and relocate bus stops closer to marked crosswalk locations		Aligns crossing needs with infrastructure to reduce unexpected conflicts and encourage safer crossings		
Corridor-wide*	Implement Leading Pedestrian Interval (LPI) at all signalized intersections	Improve visibility and awareness of pedestrians		
Corridor-wide*	Install retroreflective signal backplates at all signalized intersections	Improve visibility and awareness of traffic signal		
Corridor-wide	Install speed feedback signs	Reduce speeding and increase awareness		
N 70 th Terrace	Install High Visibility Crosswalks	Improve visibility and awareness of pedestrians		
N 68 th Avenue	Install High Visibility Crosswalks	Improve visibility and awareness of pedestrians		
Between N 68 th Avenue to N 66 th	Install Speed Radar Sign			
N 66 th Avenue	Install High Visibility Crosswalks	Improve visibility and awareness of pedestrians		
N 64 th Avenue	Install High Visibility Crosswalks	Improve visibility and awareness of pedestrians		

^{*}Noted recommendations to be led by Broward County Government in collaboration with City of Hollywood.

TABLE 3: LONG TERM RECOMMENDATIONS FOR PREFERRED CONCEPT

Lead agency for all recommendations is City of Hollywood unless otherwise noted.

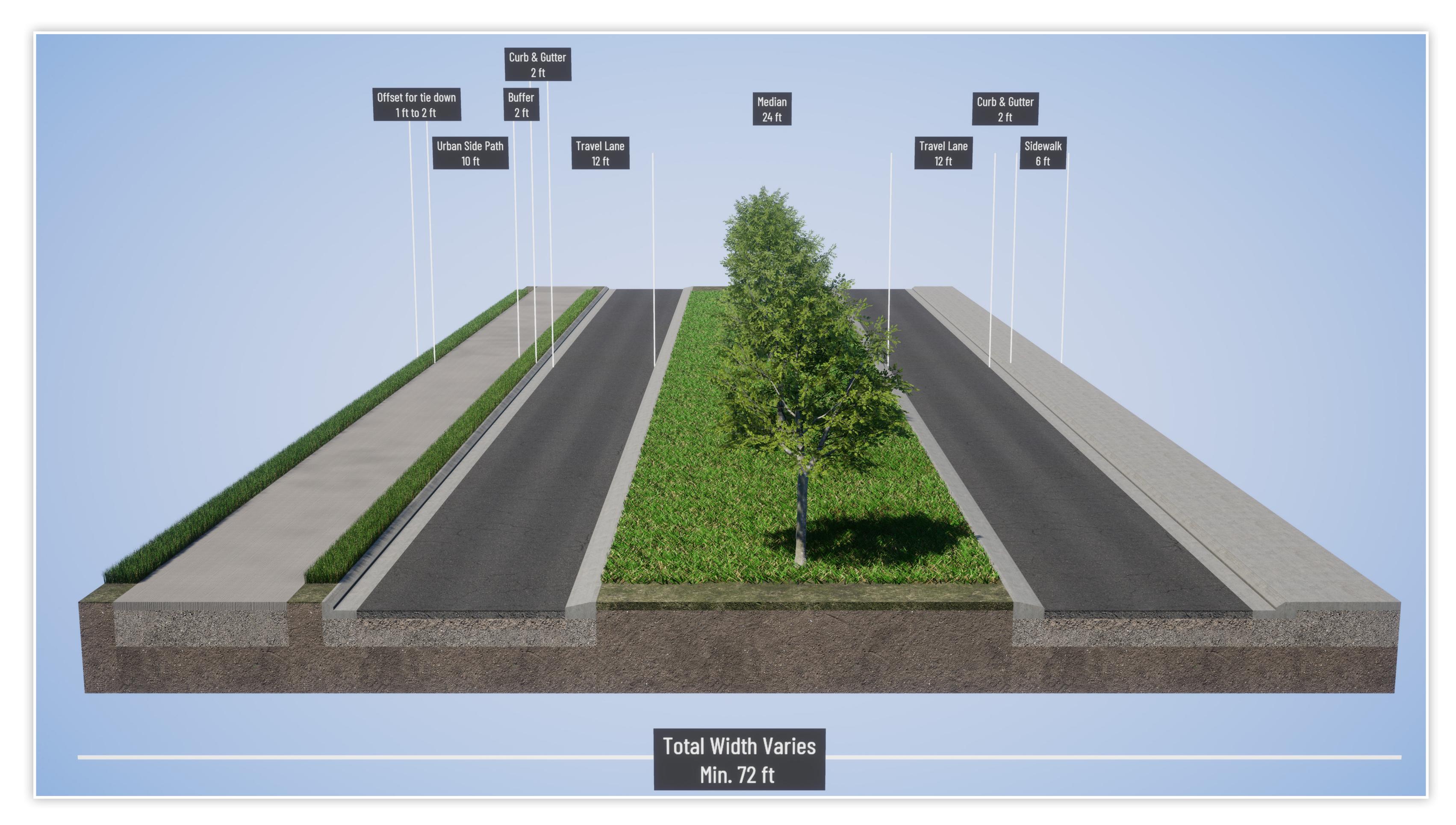
LOCATION	RECOMMENDATION	INTENDED BENEFIT
Corridor-wide	i Obarade ilantina	Improve visibility and awareness at night. Tree trimming on north side of Taft will help light reach sidewalk and roadway.

Broward Safety Action Plan (BSAP)

LOCATION	RECOMMENDATION	INTENDED BENEFIT	
Corridor-wide	Narrow lanes - 11' outside / 10' inside	Reduce speeding	
Corridor-wide	Add spot medians	Reduce speeding, control turning movements, and add refuge for midblock crossings.	
Corridor-wide	Street Trees	Creates perception of narrower roadway to decrease speeds. Vertical barrier between vehicles and pedestrians. Provide shade next to sidewalks.	
N 70 th Terrace	Provide a raised intersection	Reduce speeding. Improve visibility and awareness of pedestrians	
West of N 69 th Way	Install a raised crosswalk with RRFB	Improve visibility and awareness of pedestrians	
N 69 th Way	Relocate Bus Stop*	Reduce conflicts by aligning infrastructure	
Corridor-wide	Tighten curb radii	Reduce speed of turning vehicles	
East of N 69 th Avenue	Install a raised crosswalk with RRFB	Improve visibility and awareness of pedestrians	
West of N 64 th Avenue	Install a raised crosswalk with RRFB	Improve visibility and awareness of pedestrians	
West of N 66 th Avenue	Install a raised crosswalk with RRFB	Improve visibility and awareness of pedestrians	
East of N 66 th Avenue	Install a raised crosswalk with RRFB	Improve visibility and awareness of pedestrians	
West of N 64 th Avenue	Install a raised crosswalk with RRFB	Improve visibility and awareness of pedestrians	
N 64 th Avenue	Provide a raised intersection	Reduce speeding. Improve visibility and awareness of pedestrians	
East of N 64 th Avenue	Install a raised crosswalk with RRFB	Improve visibility and awareness of pedestrians	
East of N 62 nd Avenue	Install raised crosswalk with a RRFB	Improve visibility and awareness of pedestrians	
West of Hollywood Memorial Gardens East driveway	Install raised crosswalk with a RRFB	Improve visibility and awareness of pedestrians	
From N 64 th Avenue to SR 7	Narrow lanes to install a 6' sidewalk on the south side	Improve visibility and awareness of pedestrians	

^{*}Noted recommendations to be led by Broward County Government in collaboration with City of Hollywood

Broward Safety Action Plan Corridor Concept Plan
Taft Street, NW 70th Terrace SAFE STREETS to US 441/SR 7 F L O R I D A CONCEPTUAL - NOT FOR CONSTRUCTION September 2025 DETAILED ANALYSIS AND ENGINEERING DESIGN REQUIRED 45' RADIUS Legend Signalized Intersection Landscaped Area **Roosevelt Street** Bus Stop Location Stamped Asphalt **CORRIDOR GENERAL NOTES: Existing Bus Stop** Raised Corner Island 1. ALL CURB RADII ARE 25' UNLESS NOTED OTHERWISE (Relocated) 2. LEADING PEDESTRIAN INTERVAL (LPI) AT ALL SIGNALIZED INTERSECTIONS 3. SIGNAL TIMING TO REDUCE SPEEDING ALONG THE CORRIDOR --- Pedestrian Hybrid Beacon Street Light Pole 4. SIGNAL BACKPLATES AT ALL SIGNALS 5. TURNING VEHICLES STOP FOR PEDESTRIAN SIGNS 30' RADIUS 30' RADIUS RELOCATE BUS STOP 30' RADIUS 50' RADIUS Roosevelt Street



PREFERRED CONCEPT: TAFT STREET BETWEEN N 70TH TERRACE TO US 441/ SR 7

ALTERNATIVE CONCEPT: TAFT STREET BETWEEN N 70TH TERRACE AND US 441/ SR 7

4.3 COST ESTIMATE

An estimate of probable construction costs was prepared for the proposed preferred concept based on average historical average unit costs from FDOT Market Area 12 in spring 2025. Following the development of the corridor concept, unit measurements of each improvement were quantified from the design file to calculate the needed infrastructure proposed. A High-level corridor cost summary is provided in **Table 4**, and detailed cost estimates are included in **Appendix F**. The cost estimate includes an estimated contingency percentage to cover currently unknown costs which cannot be adequately estimated at this phase. No new right-of-way acquisition is included.

TABLE 4: COST ESTIMATE FOR PREFERRED CONCEPT

DESCRIPTION	UNITS	QUANITY	UNIT COST	COST
CORRIDOR WIDE SAFETY IMPROVEMENTS	LS	LS	\$ 2,252,113.90	\$ 2,252,113.90
CORRIDOR WIDE SIGNING AND PAVEMENT MARKING	LS	LS	\$ 115,760.76	\$ 115,760.76
CORRIDOR WIDE TREES	EA	118	\$ 500.00	\$ 59,000.00
RAISED MID BLOCK CROSSINGS (8 LOCATIONS)	LS	LS	\$ 945,109.91	\$ 945,109.91
RAISED INTERSECTIONS (2 LOCATIONS)	LS	LS	\$ 99,425.37	\$ 99,425.37
LIGHTING - ALL INCLUSIVE	LS	LS	\$ 851,375.25	\$ 851,375.25
SIGNAL MODIFICATIONS	LS	LS	\$ 112,000.00	\$ 112,000.00
DRAINAGE	LS	LS	\$ 723,200.54	\$ 723,200.54
CONTINGENCY (20%)	\$ 1,356,550.25			
UTILITY ADJUSTMENTS (5%)	\$ 257,899.29			
MOBILIZATION (10%)				\$ 593,168.36
MOT (15%)	\$ 773,697.86			
ENGINEERING (10%)	\$ 813,930.15			
CEI (10%)	\$ 813,930.15			
TOTAL (2025 DOLLARS)				\$ 9,767,161.78

4.4 FHWA SAFE SYSTEM SCORING EVALUATION

To assess the safety impacts of the proposed countermeasures, the FHWA Safe System Assessment Framework¹ scoring methodology was applied. This framework is designed to provide a consistent and data-driven measure of roadway safety by evaluating multiple factors such as roadway design, user conflict potential, exposure levels, and the likelihood of severe crash outcomes. By translating these elements into a numerical score, the method enables comparison across corridors to inform effectiveness of safety countermeasures through a Safe System Approach lens.

For consistency, one score was provided for the entire corridor (intersections were not individually scored) for two conditions: existing (baseline) and proposed preferred (post-countermeasure). The baseline score reflects current roadway characteristics (2025) and crash risk levels (2019-2023), while the post-countermeasure score reflects the anticipated safety performance after implementing the recommended BSAP strategies. The final score is relative, meaning lower scores are closer to alignment with Safe System Approach than higher scores. A side-by-side comparison highlights the reduction in risk and supports prioritization of safety projects.

TABLE 5: SAFE SYSTEM ASSESSMENT SCORING TYPES

EXPOSURE SCORE	LIKELIHOOD SCORE	SEVERITY SCORE	VRU SCORE	MOTOR VEHICLE SCORE	MODE SCORE	TOTAL SCORE
Calculates a separate	Calculates a	Calculates a separate score	Provides	Provides	Sum of	Sum of
score for vulnerable road	separate score	for VRU and MV based on	weighted risk	weighted risk	exposure,	the
users (VRU) and motor	for VRU and MV	inputs related to factors	factor inputs for	factor inputs for	likelihood,	Mode
vehicles (MV) based on	based on inputs	that increase potential	likelihood scoring	likelihood	and severity	VRU
inputs related to factors	related to factors	severity of conflicts. These	based on scaling	scoring based on	scores	score
that increase exposure	that increase the	inputs are based on travel	of various factors	scaling of various	within the	plus
to relevant conflicts.	likelihood of a	speeds and potential for	observed at the	factors observed	two	the
These inputs are based	fatal or serious	improvements in	roadway location,	at the roadway	categories	Mode
on the roadway	injury crash	proposed conditions to	as they relate to	location, as they	of VRU and	MV
geometry and user volumes.	taking place.	impact or reduce those speeds.	VRUs.	relate to MV.	MV.	Score.

¹ https://highways.dot.gov/safety/zero-deaths/safe-system-project-based-alignment-framework

Broward Safety Action Plan (BSAP)

A summary of the FHWA scores for the corridor is provided in **Table 6**. This comparison illustrates the expected gains in safety performance and quantifies the value of the proposed strategies in advancing the goal of reducing all killed and serious injury crashes in Broward to zero.

TABLE 6: TAFT STREET SAFE SYSTEM ALIGNMENT SCORES

TAFT STREET	BASELINE	SCORES	POST-COUNTEMEASURE SCORES		
CATEGORY	VRU SCORE	MV SCORE	VRU SCORE	MV SCORE	
EXPOSURE SCORE	20	20	20	20	
LIKELIHOOD SCORE	9	9	1	6	
SEVERITY SCORE	20	15	15	6	
MODE SCORE	3,600	2,700	300 720		
TOTAL SCORE	6,3	00	1,020		

Note: VRU Score is Vulnerable Users Score and MV Score: Motor Vehicle Score

4.5 BENEFIT COST ANALYSIS

Utilizing FHWA methodology, a BSAP benefit cost assessment (BCA) tool was developed to align with the goals of the Broward Safety Action Plan and support a Safe System Approach to achieve zero fatal and severe crashes. This tool utilizes the crash data from Signal 4 Analytics partnered with proven Crash Modification Factors (CMFs) from the Highway Safety Manual to calculate the benefits of implementation of safety infrastructure compared to the cost of these crashes on our communities. The community costs utilized the latest FDOT KABCO values from the Florida Design Manual for all crash types (2019). A crash matrix was populated utilizing all crashes by crash severity, mode, day/night, and intersection/mainline. This matrix aligns the selected crash modification factors for countermeasures on the corridor with the type of crash it is proven to reduce. The BSAP BCA assessment tool utilizes the predictive method equation to create a conservative calculation of the crash reduction when redundant countermeasures are utilized at a location. This tool provides a conservative estimate of crash reduction as it uses KABCO values, utilizes only safety countermeasures with official CMF values, and utilizes the predictive method equation.

Key outputs of the benefit-cost analysis include metrics like benefit-cost ratio (BCR), net present value (NPV), the internal rate of return (IRR) and payback period. While the undiscounted BCR is simply the total monetized benefits divided by the total monetized costs, a central input to evaluating cost effectiveness includes a discount rate assumption to account for the impact of time on the value of money. Project is estimated to have a 20-year life cycle.

Using a discount rate to measure cost effectiveness over time is a standard practice in evaluating the financial and economic feasibility of infrastructure investments, and 2025 USDOT guidance recommends a discount rate of 7%. Because the discount rate is a critical component to understanding cost-effectiveness, the BCR and other outputs of benefit-cost analysis should be considered in discounted terms. The NPV, then, which considers the discounted benefits minus the discounted costs, considers value in current dollars once costs and benefits are properly discounted. The IRR similarly helps demonstrate cost-effectiveness by showing what the annual benefit is "yielded" by the project – if an IRR is higher than the assumed discount rate, the project is expected to generate benefits higher than the costs over the project lifecycle. Finally, the payback period estimates at which year the cumulative benefits would surpass the cumulative costs.

Table 7 below is a summary of the benefit cost analysis for Broward Boulevard corridor. As shown below, the overall benefits to the community are far greater than the cost of the improvements. More information is provided in **Appendix G**.

TABLE 7: BENEFIT COST ASSESSMENT SUMMARY FOR PREFERRED CONCEPT

Variable	Unit	Undiscounted	Discounted	
TOTAL BENEFITS	MILLIONS OF \$2025	\$57.5	\$30.4	
TOTAL COSTS*	MILLIONS OF \$2025	\$11.8	\$10.8	
NET PRESENT VALUE	MILLIONS OF \$2025	\$45.7 \$19.6		
BENEFIT-COST RATIO	RATIO	4.89	2.82	
IRR	PERCENT	28%		
PAYBACK PERIOD	YEARS	4		

^{*} Total Costs include construction, design, and CEI costs plus annual maintenance for the life of project.

4.6 NEXT STEPS

This corridor is a high priority for the region due to the safety and mobility needs. This project will be adopted within the BSAP Plan in late 2025/early 2026 by Broward MPO Board and Board of County Commissioners. Following that, the project will be prepared for Program Ready status and integrated into the Metropolitan Transportation Plan (MTP). The list of short-term improvements will be provided to City of Hollywood in Fall 2025 for local implementation. Broward MPO will complete annual tracking of project status with BSAP annual report.

